scholarly journals Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium

2016 ◽  
Vol 113 (36) ◽  
pp. 10163-10167 ◽  
Author(s):  
Kathryn R. Fixen ◽  
Yanning Zheng ◽  
Derek F. Harris ◽  
Sudipta Shaw ◽  
Zhi-Yong Yang ◽  
...  

Nitrogenase is an ATP-requiring enzyme capable of carrying out multielectron reductions of inert molecules. A purified remodeled nitrogenase containing two amino acid substitutions near the site of its FeMo cofactor was recently described as having the capacity to reduce carbon dioxide (CO2) to methane (CH4). Here, we developed the anoxygenic phototroph, Rhodopseudomonas palustris, as a biocatalyst capable of light-driven CO2 reduction to CH4 in vivo using this remodeled nitrogenase. Conversion of CO2 to CH4 by R. palustris required constitutive expression of nitrogenase, which was achieved by using a variant of the transcription factor NifA that is able to activate expression of nitrogenase under all growth conditions. Also, light was required for generation of ATP by cyclic photophosphorylation. CH4 production by R. palustris could be controlled by manipulating the distribution of electrons and energy available to nitrogenase. This work shows the feasibility of using microbes to generate hydrocarbons from CO2 in one enzymatic step using light energy.

2006 ◽  
Vol 188 (10) ◽  
pp. 3721-3725 ◽  
Author(s):  
Veerabadran Dheenadhayalan ◽  
Giovanni Delogu ◽  
Maurizio Sanguinetti ◽  
Giovanni Fadda ◽  
Michael J. Brennan

ABSTRACT Evaluation of expression of 16 PE_PGRS genes present in Mycobacterium tuberculosis under various growth conditions demonstrated constitutive expression of 7 genes, variable expression of 7 genes, and no expression of 2 genes. An inverse expression profile for genes PE_PGRS16 and PE_PGRS26 was observed to occur in macrophages and in mice infected with M. tuberculosis. Variable expression of PE_PGRS proteins could have implications for their role in the immunopathogenesis of tuberculosis.


Author(s):  
Zongkui Kou ◽  
Xin Li ◽  
Tingting Wang ◽  
Yuanyuan Ma ◽  
Wenjie Zang ◽  
...  

Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1661-1671
Author(s):  
Klaus Maleck ◽  
Urs Neuenschwander ◽  
Rebecca M Cade ◽  
Robert A Dietrich ◽  
Jeffery L Dangl ◽  
...  

Abstract To identify Arabidopsis mutants that constitutively express systemic acquired resistance (SAR), we constructed reporter lines expressing the firefly luciferase gene under the control of the SAR-inducible PR-1 promoter (PR-1/luc). After EMS mutagenesis of a well-characterized transgenic line, we screened 250,000 M2 plants for constitutive expression of the reporter gene in vivo. From a mutant collection containing several hundred putative mutants, we concentrated on 16 mutants lacking spontaneous hypersensitive response (HR) cell death. We mapped 4 of these constitutive immunity (cim) mutants to chromosome arms. Constitutive expression of disease resistance was established by analyzing responses to virulent Peronospora parasitica and Pseudomonas syringae strains, by RNA blot analysis for endogenous marker genes, and by determination of salicylic acid levels in the mutants. The variety of the cim phenotypes allowed us to define distinct steps in both the canonical SAR signaling pathway and a separate pathway for resistance to Erysiphe cichoracearum, active in only a subset of the mutants.


Sign in / Sign up

Export Citation Format

Share Document