scholarly journals Structure of the infectious salmon anemia virus receptor complex illustrates a unique binding strategy for attachment

2017 ◽  
Vol 114 (14) ◽  
pp. E2929-E2936 ◽  
Author(s):  
Jonathan D. Cook ◽  
Azmiri Sultana ◽  
Jeffrey E. Lee

Orthomyxoviruses are an important family of RNA viruses, which include the various influenza viruses. Despite global efforts to eradicate orthomyxoviral pathogens, these infections remain pervasive. One such orthomyxovirus, infectious salmon anemia virus (ISAV), spreads easily throughout farmed and wild salmonids, constituting a significant economic burden. ISAV entry requires the interplay of the virion-attached hemagglutinin-esterase and fusion glycoproteins. Preventing infections will rely on improved understanding of ISAV entry. Here, we present the crystal structures of ISAV hemagglutinin-esterase unbound and complexed with receptor. Several distinctive features observed in ISAV HE are not seen in any other viral glycoprotein. The structures reveal a unique mode of receptor binding that is dependent on the oligomeric assembly of hemagglutinin-esterase. Importantly, ISAV hemagglutinin-esterase receptor engagement does not initiate conformational rearrangements, suggesting a distinct viral entry mechanism. This work improves our understanding of ISAV pathogenesis and expands our knowledge on the overall diversity of viral glycoprotein-mediated entry mechanisms. Finally, it provides an atomic-resolution model of the primary neutralizing antigen critical for vaccine development.

1999 ◽  
Vol 73 (3) ◽  
pp. 2136-2142 ◽  
Author(s):  
Bjørn Krossøy ◽  
Ivar Hordvik ◽  
Frank Nilsen ◽  
Are Nylund ◽  
Curt Endresen

ABSTRACT The infectious salmon anemia virus (ISAV) is an orthomyxovirus-like virus infecting teleosts. The disease caused by this virus has had major economic consequences for the Atlantic salmon farming industry in Norway, Canada, and Scotland. In this work, we report the cloning and sequencing of an ISAV-specific cDNA comprising 2,245 bp with an open reading frame coding for a predicted protein with a calculated molecular weight of 80.5 kDa. The putative protein sequence shows the core polymerase motifs characteristic of all viral RNA-dependent RNA polymerases. Comparison of the conserved motifs with the corresponding regions of other segmented negative-stranded RNA viruses shows a closer relationship with members of the Orthomyxoviridae than with viruses in other families. The putative ISAV polymerase protein (PB1) has a length of 708 amino acids, a charge of +22 at neutral pH, and a pI of 9.9, which are consistent with the properties of the PB1 proteins of other members of the family. Calculations of the distances between the different PB1 proteins indicate that the ISAV is distantly related to the other members of the family but more closely related to the influenza viruses than to the Thogoto viruses. Based on these and previously published results, we propose that the ISAV comprises a new, fifth genus in the Orthomyxoviridae.


2011 ◽  
Vol 85 (16) ◽  
pp. 8037-8045 ◽  
Author(s):  
A. Rivas-Aravena ◽  
E. Vallejos-Vidal ◽  
M. Cortez-San Martin ◽  
F. Reyes-Lopez ◽  
M. Tello ◽  
...  

2016 ◽  
Vol 82 (8) ◽  
pp. 2563-2571 ◽  
Author(s):  
Nicolás Ojeda ◽  
Constanza Cárdenas ◽  
Fanny Guzmán ◽  
Sergio H. Marshall

ABSTRACTInfectious salmon anemia virus (ISAV) is the etiological agent of the disease by the same name and causes major losses in the salmon industry worldwide. Epizootic ISAV outbreaks have occurred in Norway and, to a lesser degree, in Canada. In 2007, an ISAV outbreak in Chile destroyed most of the seasonal production and endangered the entire Chilean salmon industry. None of the existing prophylactic approaches have demonstrated efficacy in providing absolute protection from or even a palliative effect on ISAV proliferation. Sanitary control measures for ISAV, based on molecular epidemiology data, have proven insufficient, mainly due to high salmon culture densities and a constant presence of a nonpathogenic strain of the virus. This report describes an alternative treatment approach based on interfering peptides selected from a phage display library. The screening of a phage display heptapeptide library resulted in the selection of a novel peptide with significantin vitroantiviral activity against ISAV. This peptide specifically interacted with the viral hemagglutinin-esterase protein, thereby impairing virus binding, with plaque reduction assays showing a significant reduction in viral yields. The identified peptide acts at micromolar concentrations against at least two different pathogenic strains of the virus, without detectable cytotoxic effects on the tested fish cells. Therefore, antiviral peptides represent a novel alternative for controlling ISAV and, potentially, other fish pathogens.IMPORTANCEIdentifying novel methods for the efficient control of infectious diseases is imperative for the future of global aquaculture. The present study used a phage display heptapeptide library to identify a peptide with interfering activity against a key protein of the infectious salmon anemia virus (ISAV). A piscine orthomyxovirus, ISAV is a continuous threat to the commercial sustainability of cultured salmon production worldwide. The complex epidemiological strategy of this pathogen has made prophylactic control extremely difficult. The identified antiviral peptide efficiently impairs ISAV infectionin vitroby specifically blocking hemagglutinin-esterase, a pivotal surface protein of this virus. Peptide synthesis could further modify the primary structure of the identified peptide to improve specific activity and stability. The present results form the foundation for developing a new pharmacological treatment against ISAV.


Sign in / Sign up

Export Citation Format

Share Document