scholarly journals Increased expression of urokinase during atherosclerotic lesion development causes arterial constriction and lumen loss, and accelerates lesion growth

2002 ◽  
Vol 99 (16) ◽  
pp. 10665-10670 ◽  
Author(s):  
M. Falkenberg ◽  
C. Tom ◽  
M. B. DeYoung ◽  
S. Wen ◽  
R. Linnemann ◽  
...  
Blood ◽  
2003 ◽  
Vol 101 (7) ◽  
pp. 2661-2666 ◽  
Author(s):  
Peter C. Burger ◽  
Denisa D. Wagner

P-selectin is an adhesion molecule expressed on activated platelets and endothelium. It is known to play an important role in atherosclerosis. P-selectin also circulates in plasma in a soluble form (sP-selectin), which induces procoagulant microparticle formation. We investigated the role of platelet versus endothelial P-selectin in generating sP-selectin and in the formation of atherosclerotic lesions in the apolipoprotein E (apoE)–deficient mouse model. For this we transplanted apoE−/−P-selectin−/− and apoE−/−P-selectin+/+ lethally irradiated mice with bone marrow of either genotype. Seven months after transplantation, we determined from the chimeric animals that the majority of circulating sP-selectin was of endothelial origin. Thus, in atherosclerosis, the procoagulant sP-selectin reflects endothelial rather than platelet activation. We found that endothelial P-selectin was crucial for the promotion of atherosclerotic lesion growth because in its absence only relatively small lesions developed. However, platelet P-selectin also contributed to the lesion development because lesions in wild-type recipients receiving transplants with wild-type platelets were 30% larger than those receiving P-selectin-deficient platelets (P < .008) and were more frequently calcified (80% versus 44%). In comparison with P-selectin wild-type animals, absence of either endothelial or platelet P-selectin inhibited migration of smooth muscle cells into the lesion. Thus, in addition to endothelium, platelets and their P-selectin also actively promote advanced atherosclerotic lesion development.


2015 ◽  
Vol 87 ◽  
pp. 237-247 ◽  
Author(s):  
Jing Tao ◽  
Can-Zhao Liu ◽  
Jing Yang ◽  
Zhi-Zhong Xie ◽  
Ming-Ming Ma ◽  
...  

2001 ◽  
Vol 158 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Erwin Blessing ◽  
Lee Ann Campbell ◽  
Michael E. Rosenfeld ◽  
Natacha Chough ◽  
Cho-Chou Kuo

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Ruud Out ◽  
Bart Lammers ◽  
Reeni B. Hildebrand ◽  
Carmel M. Quinn ◽  
David Williamson ◽  
...  

Objective ATP-binding cassette transporter G1 (ABCG1) and apolipoprotein E (apoE) play a role in macrophage cholesterol efflux and consequently the development of atherosclerosis. Although a possible interaction between ABCG1 and apoE in cholesterol efflux was postulated, the combined action of these proteins in atherosclerosis is still unclear. Methods and Results LDL receptor knockout (KO) mice were transplanted with bone marrow from ABCG1/apoE double KO (dKO) mice, their respective single knockouts, and wild-type (WT) controls. After feeding a high-fat/high-cholesterol diet for 6 weeks, no differences were found in serum lipid levels. However, the mean atherosclerotic lesion area in dKO transplanted animals (187 ± 18 × 10 3 μ m 2 ) was 1.4-fold (p < 0.01) increased compared to single knockouts (ABCG1 KO: 138 ± 5 × 10 3 μm 2 ; apoE KO: 131 ± 7 × 10 3 μm 2 ) and 1.9-fold (p< 0.001) as compared to WT controls (97 ± 15 × 10 3 μm 2 ). In vitro cholesterol efflux experiments confirmed that combined deletion of ABCG1 and apoE resulted in a larger attenuation of macrophage cholesterol efflux to HDL as compared to single knockouts. Conclusions Deletion of macrophage ABCG1 or apoE does lead to a moderate increase in atherosclerotic lesion development while combined deletion of ABCG1 and apoE induces a more dramatic increase in atherosclerosis. These results indicate an added, independent effect for both macrophage ABCG1 and apoE in atherosclerosis.


Author(s):  
Kevin R. Johnson ◽  
John N. Oshinski

Low and oscillatory arterial wall shear stress (WSS) have been shown to have an effect on many factors implicated in atherosclerotic lesion development. The majority of studies on the relationship between low or oscillating WSS and sites of intimal thickening and early atherosclerotic lesion development are based on in-vitro model studies of flow and WSS distribution. These models are based on average vessel geometries with average flow conditions and compared to average pathology distribution of lesions that may obscure the true relationship between WSS and lesion distribution[1]. Recent techniques have been developed using coronary MR angiography to create patient-specific 3D models along with velocity measurements of blood flow using phase contrast magnetic resonance (PCMR). However, these models may lack adequate spatial resolution for accurate, localized calculation of WSS[2]. Current, state-of-art multidetector CT scanners offer improvements in spatial resolution over MRI for creation of 3D vessel models.


Sign in / Sign up

Export Citation Format

Share Document