scholarly journals Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis

2018 ◽  
Vol 115 (10) ◽  
pp. 2437-2442 ◽  
Author(s):  
Heïdi Serra ◽  
Christophe Lambing ◽  
Catherine H. Griffin ◽  
Stephanie D. Topp ◽  
Divyashree C. Nageswaran ◽  
...  

During meiosis, homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double-strand breaks (DSBs), which are processed into single-stranded DNA that can invade a homologous chromosome. The resulting joint molecules can ultimately be resolved as crossovers. In Arabidopsis, competing pathways balance the repair of ∼100–200 meiotic DSBs into ∼10 crossovers per meiosis, with the excess DSBs repaired as noncrossovers. To bias DSB repair toward crossovers, we simultaneously increased dosage of the procrossover E3 ligase gene HEI10 and introduced mutations in the anticrossovers helicase genes RECQ4A and RECQ4B. As HEI10 and recq4a recq4b increase interfering and noninterfering crossover pathways, respectively, they combine additively to yield a massive meiotic recombination increase. Interestingly, we also show that increased HEI10 dosage increases crossover coincidence, which indicates an effect on interference. We also show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases distally towards the subtelomeres in both HEI10 and recq4a recq4b backgrounds, while the centromeres remain crossover suppressed. These results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes.

2017 ◽  
Author(s):  
Heïdi Serra ◽  
Christophe Lambing ◽  
Catherine H. Griffin ◽  
Stephanie D. Topp ◽  
Mathilde Séguéla-Arnaud ◽  
...  

AbstractDuring meiosis homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double strand breaks, which are processed into single-stranded DNA that can invade a homologous chromosome. The resulting joint molecules can ultimately be resolved as crossovers. In Arabidopsis, competing pathways balance the repair of ∼100–200 meiotic DSBs into ∼10 crossovers per meiosis, with the excess DSBs repaired as non-crossovers. In order to bias DSB repair towards crossovers, we simultaneously increased dosage of the pro-crossover E3 ligase gene HEI10 and introduced mutations in the anti-crossover helicase genes RECQ4A and RECQ4B. As HEI10 and recq4a recq4b increase interfering and non-interfering crossover pathways respectively, they combine additively to yield a massive meiotic recombination increase. Interestingly, we also show that increased HEI10 dosage increases crossover coincidence, which indicates an effect of HEI10 on interference. We also show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases towards the sub-telomeres in both HEI10 and recq4a recq4b backgrounds, while the centromeres remain crossover-suppressed. These results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes.


2017 ◽  
Author(s):  
James H. Crichton ◽  
Christopher J. Playfoot ◽  
Marie MacLennan ◽  
David Read ◽  
Howard J. Cooke ◽  
...  

AbstractMeiosis relies on the SPO11 endonuclease to generate the recombinogenic DNA double strand breaks (DSBs) required for homologous chromosome synapsis and segregation. The number of meiotic DSBs needs to be sufficient to allow chromosomes to search for and find their homologs, but not excessive to the point of causing genome instability. Here we report that meiotic DSB frequency in mouse spermatocytes is regulated by the mammal-specific gene Tex19.1. We show that the chromosome asynapsis previously reported in Tex19.1-/- spermatocytes is preceded by reduced numbers of recombination foci in leptotene and zygotene. Tex19.1 is required for the generation of normal levels of Spo11-dependent DNA damage during leptotene, but not for upstream events such as MEI4 foci formation or accumulation of H3K4me3 at recombination hotspots. Furthermore, we show that mice carrying mutations in the E3 ubiquitin ligase UBR2, a TEX19.1-interacting partner, phenocopy the Tex19.1-/- recombination defects. These data show that Tex19.1 and Ubr2 are required for mouse spermatocytes to generate sufficient meiotic DSBs to ensure that homology search is consistently successful, and reveal a hitherto unknown genetic pathway regulating meiotic DSB frequency in mammals.Author SummaryMeiosis is a specialised type of cell division that occurs during sperm and egg development to reduce chromosome number prior to fertilisation. Recombination is a key step in meiosis as it facilitates the pairing of homologous chromosomes prior to their reductional division, and generates new combinations of genetic alleles for transmission in the next generation. Regulating the amount of recombination is key for successful meiosis: too much will likely cause mutations, chromosomal re-arrangements and genetic instability, whereas too little causes defects in homologous chromosome pairing prior to the meiotic divisions. This study identifies a genetic pathway requiredto generate robust meiotic recombination in mouse spermatocytes. We show that male mice with mutations in Tex19.1 or Ubr2, which encodes an E3 ubiquitin ligase that interacts with TEX19.1, have defects in generating normal levels of meiotic recombination. We show that the defects in these mutants impact on the recombination process at the stage when programmed DNA double strand breaks are being made. This defect likely contributes to the chromosome synapsis and meiotic progression phenotypes previously described in these mutant mice. This study has implications for our understanding of how this fundamental aspect of genetics and inheritance is controlled.


2020 ◽  
Author(s):  
Talia Hatkevich ◽  
Danny E. Miller ◽  
Carolyn A. Turcotte ◽  
Margaret C. Miller ◽  
Jeff Sekelsky

ABSTRACTProgrammed DNA double-strand breaks (DSBs) made during meiosis are repaired by recombination with the homologous chromosome to generate, at selected sites, reciprocal crossovers that are critical for the proper separation of homologs in the first meiotic divisions. Backup repair processes can compensate when the normal meiotic recombination processes are non-functional. We describe a novel backup repair mechanism that occurs when the homologous chromosome is not available in Drosophila melanogaster meiosis. In the presence of a previously described mutation (Mcm5A7) that disrupts chromosome pairing, DSB repair is initiated by homologous recombination but is completed by non-homologous end joining (NHEJ). Remarkably, this process yields precise repair products. Our results provide support for a recombination intermediate recently discovered in mouse meiosis, in which an oligonucleotide bound to the Spo11 protein that catalyzes DSB formation remains bound after resection. We propose that this oligonucleotide functions as a primer for fill-in synthesis to allow scarless repair by NHEJ.


2021 ◽  
Author(s):  
Nataliya E. Yelina ◽  
Sabrina Gonzalez-Jorge ◽  
Dominique Hirsz ◽  
Ziyi Yang ◽  
Ian R. Henderson

AbstractDuring meiosis, homologous chromosomes pair and recombine, which can result in reciprocal crossovers that increase genetic diversity. Crossovers are unevenly distributed along eukaryote chromosomes and show repression in heterochromatin and the centromeres. Within the chromosome arms crossovers are often concentrated in hotspots, which are typically in the kilobase range. The uneven distribution of crossovers along chromosomes, together with their low number per meiosis, creates a limitation during crop breeding, where recombination can be beneficial. Therefore, targeting crossovers to specific genome locations has the potential to accelerate crop improvement. In plants, meiotic crossovers are initiated by DNA double strand breaks (DSBs) that are catalysed by SPO11 complexes, which consist of two catalytic (SPO11-1 and SPO11-2) and two non-catalytic subunits (MTOPVIB). We used the model plant Arabidopsis thaliana to target a dCas9-MTOPVIB fusion protein to the 3a crossover hotspot via CRISPR. We observed that this was insufficient to significantly change meiotic crossover frequency or pattern within 3a. We discuss the implications of our findings for targeting meiotic recombination within plant genomes.


2019 ◽  
Vol 5 (1) ◽  
pp. eaau9780 ◽  
Author(s):  
Qianting Zhang ◽  
Shu-Yan Ji ◽  
Kiran Busayavalasa ◽  
Chao Yu

Segregation of homologous chromosomes in meiosis I is tightly regulated by their physical links, or crossovers (COs), generated from DNA double-strand breaks (DSBs) through meiotic homologous recombination. In budding yeast, three ZMM (Zip1/2/3/4, Mer3, Msh4/5) proteins, Zip2, Zip4, and Spo16, form a “ZZS” complex, functioning to promote meiotic recombination via a DSB repair pathway. Here, we identified the mammalian ortholog of Spo16, termed SPO16, which interacts with the mammalian ortholog of Zip2 (SHOC1/MZIP2), and whose functions are evolutionarily conserved to promote the formation of COs. SPO16 localizes to the recombination nodules, as SHOC1 and TEX11 do. SPO16 is required for stabilization of SHOC1 and proper localization of other ZMM proteins. The DSBs formed in SPO16-deleted meiocytes were repaired without COs formation, although synapsis is less affected. Therefore, formation of SPO16-SHOC1 complex–associated recombination intermediates is a key step facilitating meiotic recombination that produces COs from yeast to mammals.


2020 ◽  
Vol 48 (12) ◽  
pp. 6624-6639
Author(s):  
Yongliang Shang ◽  
Tao Huang ◽  
Hongbin Liu ◽  
Yanlei Liu ◽  
Heng Liang ◽  
...  

Abstract Repair of DNA double-strand breaks (DSBs) with homologous chromosomes is a hallmark of meiosis that is mediated by recombination ‘bridges’ between homolog axes. This process requires cooperation of DMC1 and RAD51 to promote homology search and strand exchange. The mechanism(s) regulating DMC1/RAD51-ssDNA nucleoprotein filament and the components of ‘bridges’ remain to be investigated. Here we show that MEIOK21 is a newly identified component of meiotic recombination bridges and is required for efficient formation of DMC1/RAD51 foci. MEIOK21 dynamically localizes on chromosomes from on-axis foci to ‘hanging foci’, then to ‘bridges’, and finally to ‘fused foci’ between homolog axes. Its chromosome localization depends on DSBs. Knockout of Meiok21 decreases the numbers of HSF2BP and DMC1/RAD51 foci, disrupting DSB repair, synapsis and crossover recombination and finally causing male infertility. Therefore, MEIOK21 is a novel recombination factor and probably mediates DMC1/RAD51 recruitment to ssDNA or their stability on chromosomes through physical interaction with HSF2BP.


2008 ◽  
Vol 180 (4) ◽  
pp. 673-679 ◽  
Author(s):  
Fang Yang ◽  
Sigrid Eckardt ◽  
N. Adrian Leu ◽  
K. John McLaughlin ◽  
Peijing Jeremy Wang

During meiosis, homologous chromosomes undergo synapsis and recombination. We identify TEX15 as a novel protein that is required for chromosomal synapsis and meiotic recombination. Loss of TEX15 function in mice causes early meiotic arrest in males but not in females. Specifically, TEX15-deficient spermatocytes exhibit a failure in chromosomal synapsis. In mutant spermatocytes, DNA double-strand breaks (DSBs) are formed, but localization of the recombination proteins RAD51 and DMC1 to meiotic chromosomes is severely impaired. Based on these data, we propose that TEX15 regulates the loading of DNA repair proteins onto sites of DSBs and, thus, its absence causes a failure in meiotic recombination.


2022 ◽  
Vol 36 (1-2) ◽  
pp. 4-6
Author(s):  
Corinne Grey ◽  
Bernard de Massy

During meiosis, a molecular program induces DNA double-strand breaks (DSBs) and their repair by homologous recombination. DSBs can be repaired with or without crossovers. ZMM proteins promote the repair toward crossover. The sites of DSB repair are also sites where the axes of homologous chromosomes are juxtaposed and stabilized, and where a structure called the synaptonemal complex initiates, providing further regulation of both DSB formation and repair. How crossover formation and synapsis initiation are linked has remained unknown. The study by Pyatnitskaya and colleagues (pp. 53–69) in this issue of Genes & Development highlights the central role of the Saccharomyces cerevisiae ZMM protein Zip4 in this process.


2013 ◽  
Vol 33 (16) ◽  
pp. 3365-3376 ◽  
Author(s):  
Yun-Hsin Cheng ◽  
Chi-Ning Chuang ◽  
Hui-Ju Shen ◽  
Feng-Ming Lin ◽  
Ting-Fang Wang

Recombination and synapsis of homologous chromosomes are hallmarks of meiosis in many organisms. Meiotic recombination is initiated by Spo11-induced DNA double-strand breaks (DSBs), whereas chromosome synapsis is mediated by a tripartite structure named the synaptonemal complex (SC). Previously, we proposed that budding yeast SC is assembled via noncovalent interactions between the axial SC protein Red1, SUMO chains or conjugates, and the central SC protein Zip1. Incomplete synapsis and unrepaired DNA are monitored by Mec1/Tel1-dependent checkpoint responses that prevent exit from the pachytene stage. Here, our results distinguished three distinct modes of Mec1/Tec1 activation during early meiosis that led to phosphorylation of three targets, histone H2A at S129 (γH2A), Hop1, and Zip1, which are involved, respectively, in DNA replication, the interhomolog recombination and chromosome synapsis checkpoint, and destabilization of homology-independent centromere pairing. γH2A phosphorylation is Red1 independent and occurs prior to Spo11-induced DSBs. DSB- and Red1-dependent Hop1 phosphorylation is activated via interaction of the Red1-SUMO chain/conjugate ensemble with the Ddc1-Rad17-Mec3 (9-1-1) checkpoint complex and the Mre11-Rad50-Xrs2 complex. During SC assembly, Zip1 outcompetes 9-1-1 from the Red1-SUMO chain ensemble to attenuate Hop1 phosphorylation. In contrast, chromosome synapsis cannot attenuate DSB-dependent and Red1-independent Zip1 phosphorylation. These results reveal how DNA replication, DSB repair, and chromosome synapsis are differentially monitored by the meiotic checkpoint network.


2020 ◽  
Author(s):  
Agnieszka Lukaszewicz ◽  
Julian Lange ◽  
Scott Keeney ◽  
Maria Jasin

AbstractNumerous DNA double-strand breaks (DSBs) arise genome-wide during meiosis to ensure recombination between homologous chromosomes, which is required for gamete formation1,2. The ATM kinase plays a central role in controlling both the number and position of DSBs3-5, but the consequences of deregulated DSB formation have not been explored. Here we discovered that an unanticipated type of DNA deletion arises at meiotic recombination hotspots in the absence of ATM. Deletions form via joining of ends from two closely-spaced DSBs at adjacent hotspots or within a single hotspot. Deletions are also detected in normal cells, albeit at much lower frequency, revealing that the meiotic genome has a hidden potential for deletion events. Remarkably, a subset of deletions contain insertions that likely originated from DNA fragments released from hotspots on other chromosomes. Moreover, although deletions form primarily within one chromosome, joining between homologous chromosomes is also observed. This predicts in turn gross chromosome rearrangements, with evidence of damage to multiple chromatids and aborted gap repair. Thus, multiple nearby meiotic DSBs are normally suppressed by ATM to protect genomic integrity. We expect the de novo germline mutations we observe to affect human health and genome evolution.


Sign in / Sign up

Export Citation Format

Share Document