inner channel
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 21)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Vol 16 (2) ◽  
pp. 29-40
Author(s):  
S. A. Akinin ◽  
A. V. Starov

The results of computational and experimental studies of a model of a hypersonic convergent air intake are presented. Experimental studies were carried out in a hot-shot wind tunnel IT-302M SB RAS at a Mach number M = 5.7 and an angle of attack α = 4 °. Numerical modeling was carried out in a three-dimensional setting in the ANSYS Fluent software package. The calculations were carried out in 4 versions using different turbulence models: k-ɛ standard, RNG k-ɛ, k-ɷ standard and k-ɷ SST. The features of the flow structure are established. The pressure distributions on the compression surfaces and in the air intake channel are obtained. The separated flow at the entrance of the inner channel was studied. It was found that the use of various turbulence models has a significant effect on the size and position of separation. The best agreement between the calculated and experimental data on the level of static pressure was shown by the variant with the k-ɛ standard turbulence model.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110662
Author(s):  
Farooq Saeed ◽  
Kamran Z Ahmed ◽  
Amro OE Owes ◽  
Ion Paraschivoiu

Many approaches exist today that employ hot-air from aircraft compressor bleed for anti-icing critical aircraft surfaces. This paper introduces and numerically analyzes the novel application of an inner or etched channel to augment heat transfer from a hot-air jet impinging on a curved surface representing the inner surface of an aircraft wing’s leading edge or slat. The study shows that proper positioning, geometry, and flow characteristics of a channel along the inner surface of the leading edge can significantly enhance heat transfer, boost the anti-icing system performance, and greatly enhance flight safety during critical icing weather conditions. Commercially available CFD software, ANSYS Fluent is used to model and analyze the effect of different geometric and flow parameters typical of those found in small to medium category commercial transport aircraft to help determine the optimum arrangement. These parameters include: (1) jet nozzle height-to-slot diameter ratios from 4 to 8, (2) channel width-to-slot diameter ratios from 0.4 to 1.8, and (3) inner-channel inlet location angles from 10° to 60°. Each configuration resulting from a combination of the above parameters was simulated at Reynolds numbers based on jet-slot diameter of 30,000, 60,000, and 90,000. Empirical relations based on available experimental data are used to validate the results. The main findings of the study reveal that the jet height-to-slot diameter ratio of 6, inner channel height-to-slot diameter ratios of 1.8, and inner-channel inlet angular locations of 10° combination resulted in the highest heat transfer at all Reynolds number as well as higher at increased Reynold numbers.


Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 446
Author(s):  
Aida Amantayeva ◽  
Nargiz Adilzhanova ◽  
Aizhan Issatayeva ◽  
Wilfried Blanc ◽  
Carlo Molardi ◽  
...  

Epidural anesthesia is a pain management process that requires the insertion of a miniature needle through the epidural space located within lumbar vertebrae. The use of a guidance system for manual insertion can reduce failure rates and provide increased efficiency in the process. In this work, we present and experimentally assess a guidance system based on a network of fiber optic distributed sensors. The fibers are mounted externally to the needle, without blocking its inner channel, and through a strain-to-shape detection method reconstruct the silhouette of the epidural device in real time (1 s). We experimentally assessed the shape sensing methods over 25 experiments performed in a phantom, and we observed that the sensing system correctly identified bending patterns typical in epidural insertions, characterized by the different stiffness of the tissues. By studying metrics related to the curvatures and their temporal changes, we provide identifiers that can potentially serve for the (in)correct identification of the epidural space, and support the operator through the insertion process by recognizing the bending patterns.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6973
Author(s):  
Ji-Hyun Oh ◽  
Muhammad Tanveer ◽  
Kwang-Yong Kim

A double-bridge shape is proposed as a novel flow channel cross-sectional shape of a membraneless microfluidic fuel cell, and its electrochemical performance was analyzed with a numerical model. A membraneless microfluidic fuel cell (MMFC) is a micro/nano-scale fuel cell with better economic and commercial viability with the elimination of the polymer electrolyte membrane. The numerical model involves the Navier–Stokes, Butler–Volmer, and mass transport equations. The results from the numerical model were validated with the experimental results for a single-bridge channel. The proposed MMFC with double-bridge flow channel shape performed better in comparison to the single-bridge channel shape. A parametric study for the double-bridge channel was performed using three sub-channel widths with the fixed total channel width and the bridge height. The performance of the MMFC varied most significantly with the variation in the width of the inner channel among the sub-channel widths, and the power density increased with this channel width because of the reduced width of the mixing layer in the inner channel. The bridge height significantly affected the performance, and at a bridge height at 90% of the channel height, a higher peak power density of 171%was achieved compared to the reference channel.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 874
Author(s):  
Qianwen Xu ◽  
Jeffery C. C. Lo ◽  
Shiwei Ricky Lee

3D printing is regarded as a useful tool for the fabrication of microfluidic connectors to overcome the challenges of time consumption, clogging, poor alignment and bulky fixtures existing for current interconnections. 3D-printed connectors without any additional components can be directly printed to substrate with an orifice by UV-assisted coaxial printing. This paper further characterized and evaluated 3D-printed connectors fabricated by the proposed method. A process window with an operable combination of flow rates was identified. The outer flow rate could control the inner channel dimensions of 3D-printed connectors, which were expected to achieve less geometric mismatch of flow paths in microfluidic interfaces. The achieved smallest inner channel diameter was around 120 µm. Furthermore, the withstood pressure of 3D-printed connectors was evaluated to exceed 450 kPa, which could enable microfluidic chips to work at normal pressure.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Marzia Munafò ◽  
Victoria R Lawless ◽  
Alessandro Passera ◽  
Serena MacMillan ◽  
Susanne Bornelöv ◽  
...  

The Nuclear Pore Complex (NPC) is the principal gateway between nucleus and cytoplasm that enables exchange of macromolecular cargo. Composed of multiple copies of ~30 different nucleoporins (Nups), the NPC acts as a selective portal, interacting with factors which individually license passage of specific cargo classes. Here we show that two Nups of the inner channel, Nup54 and Nup58, are essential for transposon silencing via the PIWI-interacting RNA (piRNA) pathway in the Drosophila ovary. In ovarian follicle cells, loss of Nup54 and Nup58 results in compromised piRNA biogenesis exclusively from the flamenco locus, whereas knockdowns of other NPC subunits have widespread consequences. This provides evidence that some nucleoporins can acquire specialised roles in tissue-specific contexts. Our findings consolidate the idea that the NPC has functions beyond simply constituting a barrier to nuclear/cytoplasmic exchange, as genomic loci subjected to strong selective pressure can exploit NPC subunits to facilitate their expression.


2021 ◽  
Vol 25 (2) ◽  
pp. 769-786
Author(s):  
Angelo Breda ◽  
Patricia M. Saco ◽  
Steven G. Sandi ◽  
Neil Saintilan ◽  
Gerardo Riccardi ◽  
...  

Abstract. The vulnerability of coastal wetlands to future sea-level rise (SLR) has been extensively studied in recent years, and models of coastal wetland evolution have been developed to assess and quantify the expected impacts. Coastal wetlands respond to SLR by vertical accretion and landward migration. Wetlands accrete due to their capacity to trap sediments and to incorporate dead leaves, branches, stems and roots into the soil, and they migrate driven by the preferred inundation conditions in terms of salinity and oxygen availability. Accretion and migration strongly interact, and they both depend on water flow and sediment distribution within the wetland, so wetlands under the same external flow and sediment forcing but with different configurations will respond differently to SLR. Analyses of wetland response to SLR that do not incorporate realistic consideration of flow and sediment distribution, like the bathtub approach, are likely to result in poor estimates of wetland resilience. Here, we investigate how accretion and migration processes affect wetland response to SLR using a computational framework that includes all relevant hydrodynamic and sediment transport mechanisms that affect vegetation and landscape dynamics, and it is efficient enough computationally to allow the simulation of long time periods. Our framework incorporates two vegetation species, mangrove and saltmarsh, and accounts for the effects of natural and manmade features like inner channels, embankments and flow constrictions due to culverts. We apply our model to simplified domains that represent four different settings found in coastal wetlands, including a case of a tidal flat free from obstructions or drainage features and three other cases incorporating an inner channel, an embankment with a culvert, and a combination of inner channel, embankment and culvert. We use conditions typical of south-eastern Australia in terms of vegetation, tidal range and sediment load, but we also analyse situations with 3 times the sediment load to assess the potential of biophysical feedbacks to produce increased accretion rates. We find that all wetland settings are unable to cope with SLR and disappear by the end of the century, even for the case of increased sediment load. Wetlands with good drainage that improves tidal flushing are more resilient than wetlands with obstacles that result in tidal attenuation and can delay wetland submergence by 20 years. Results from a bathtub model reveal systematic overprediction of wetland resilience to SLR: by the end of the century, half of the wetland survives with a typical sediment load, while the entire wetland survives with increased sediment load.


2021 ◽  
pp. 17-22
Author(s):  
A. Yu. Tretyak ◽  
◽  
Qiang Wang ◽  
Chun-Lei Wu ◽  
E. I. Shifrin ◽  
...  

Today, the most promising and effective method of quality control of the continuously cast billets is electromagnetic stirring of the melt. In this case, an important component is the effect of the stirring on the jet in the nozzle. Moreover, as research has shown, this method is highly dependent on the configuration of the inner channel of the nozzle. Research have shown that positive or negative taper of the inner surface of the nozzle allows to obtain different results after applying EMS. Taper control completely changes the pattern of the melt flow and its deceleration in the mold, especially when it is casting of large billets. The results of the research show that minor changes in the taper of the nozzle significantly increase the effect of EMS implementation, which is observed already at 0.27 % of positive the taper and increases to 0.54%.


Author(s):  
Gurjit Singh ◽  
S.S. Sehagal

The computational analysis for micro channel flow in a branched network was investigated by three dimensional CFD approach. The effect of the change of Inlet Plenum (IP) size at a constant Aspect Ratio (AR) of the outermost channel on pressure drop in a fractal branched micro channel was performed. The properties are compared along a particular path and it was observed that the pressure drop along a bifurcated path has considerably less effect when compared to that of the outer most straight branched channel for a constant aspect ratio model. Pressure does not change significantly if we change the IP radius even when all other parameters are constant. Velocity in the inner channel after a straight run has reduced significantly even for same AR and Reynolds Number (Re). This leads to the conclusion that the IP size affects the velocity after the bifurcation.


Sign in / Sign up

Export Citation Format

Share Document