scholarly journals Architecture of cell–cell adhesion mediated by sidekicks

2018 ◽  
Vol 115 (37) ◽  
pp. 9246-9251 ◽  
Author(s):  
Hua Tang ◽  
Haishuang Chang ◽  
Yue Dong ◽  
Luqiang Guo ◽  
Xiangyi Shi ◽  
...  

Cell–cell adhesion is important for cell growth, tissue development, and neural network formation. Structures of cell adhesion molecules have been widely studied by crystallography, revealing the molecular details of adhesion interfaces. However, due to technical limitations, the overall structure and organization of adhesion molecules at cell adhesion interfaces has not been fully investigated. Here, we combine electron microscopy and other biophysical methods to characterize the structure of cell–cell adhesion mediated by the cell adhesion molecule Sidekick (Sidekick-1 and Sidekick-2) and obtain 3D views of the Sidekick-mediated adhesion interfaces as well as the organization of Sidekick molecules between cell membranes by electron tomography. The results suggest that the Ig-like domains and the fibronectin III (FnIII) domains of Sidekicks play different roles in cell adhesion. The Ig-like domains mediate the homophilic transinteractions bridging adjacent cells, while the FnIII domains interact with membranes, resulting in a tight adhesion interface between cells that may contribute to the specificity and plasticity of cell–cell contacts during cell growth and neural development.

2021 ◽  
Vol 118 (39) ◽  
pp. e2022442118
Author(s):  
Luqiang Guo ◽  
Yichun Wu ◽  
Haishuang Chang ◽  
Ze Zhang ◽  
Hua Tang ◽  
...  

The Down syndrome cell adhesion molecule (DSCAM) belongs to the immunoglobulin superfamily (IgSF) and plays important roles in neural development. It has a large ectodomain, including 10 Ig-like domains and 6 fibronectin III (FnIII) domains. Previous data have shown that DSCAM can mediate cell adhesion by forming homophilic dimers between cells and contributes to self-avoidance of neurites or neuronal tiling, which is important for neural network formation. However, the organization and assembly of DSCAM at cell adhesion interfaces has not been fully understood. Here we combine electron microscopy and other biophysical methods to characterize the structure of the DSCAM-mediated cell adhesion and generate three-dimensional views of the adhesion interfaces of DSCAM by electron tomography. The results show that mouse DSCAM forms a regular pattern at the adhesion interfaces. The Ig-like domains contribute to both trans homophilic interactions and cis assembly of the pattern, and the FnIII domains are crucial for the cis pattern formation as well as the interaction with the cell membrane. By contrast, no obvious assembly pattern is observed at the adhesion interfaces mediated by mouse DSCAML1 or Drosophila DSCAMs, suggesting the different structural roles and mechanisms of DSCAMs in mediating cell adhesion and neural network formation.


2006 ◽  
Vol 26 (13) ◽  
pp. 5086-5095 ◽  
Author(s):  
Joan J. Bech-Serra ◽  
Belén Santiago-Josefat ◽  
Cary Esselens ◽  
Paul Saftig ◽  
José Baselga ◽  
...  

ABSTRACT In contrast with the early view of metalloproteases as simple extracellular matrix-degrading entities, recent findings show that they are highly specific modulators of different signaling pathways involved, positively or negatively, in tumor development. Thus, before considering a given metalloprotease a therapeutic target, it seems advisable to characterize its function by identifying its repertoire of substrates. Here, we present a proteomic approach to identify ADAM17 substrates by difference gel electrophoresis. We found that the shedding of the extracellular domain of the transferrin receptor and those of two cell-cell adhesion molecules, activated leukocyte cell adhesion molecule (ALCAM) and desmoglein 2 (Dsg-2), is increased in cells overexpressing ADAM17. Genetic evidence shows that while ADAM17 is responsible for the shedding of ALCAM, both ADAM17 and ADAM10 can act on Dsg-2. Activation of the epidermal growth factor receptor leads to the upregulation of the shedding of Dsg-2 and to the concomitant upregulation of ADAM17, but not ADAM10, supporting the ability of overexpressed ADAM17 to shed Dsg-2. These results unveil a role of ADAM10 and ADAM17 in the shedding of cell-cell adhesion molecules. Since loss of cell adhesion is an early event in tumor development, these results suggest that ADAM17 is a useful target in anticancer therapy.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 118
Author(s):  
David de Agustín-Durán ◽  
Isabel Mateos-White ◽  
Jaime Fabra-Beser ◽  
Cristina Gil-Sanz

The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell–cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.


2008 ◽  
Vol 16 (3) ◽  
pp. 349-353 ◽  
Author(s):  
James L. Burchette ◽  
Tram T. Pham ◽  
Steven P. Higgins ◽  
Jonathan L. Cook ◽  
Alejandro Peralta Soler

2000 ◽  
Vol 275 (14) ◽  
pp. 10291-10299 ◽  
Author(s):  
Keiko Satoh-Horikawa ◽  
Hiroyuki Nakanishi ◽  
Kenichi Takahashi ◽  
Masako Miyahara ◽  
Miyuki Nishimura ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Chee Wai Wong ◽  
Danielle E. Dye ◽  
Deirdre R. Coombe

Metastasis is a major clinical problem and results in a poor prognosis for most cancers. The metastatic pathway describes the process by which cancer cells give rise to a metastatic lesion in a new tissue or organ. It consists of interconnecting steps all of which must be successfully completed to result in a metastasis. Cell-cell adhesion is a key aspect of many of these steps. Adhesion molecules belonging to the immunoglobulin superfamily (Ig-SF) commonly play a central role in cell-cell adhesion, and a number of these molecules have been associated with cancer progression and a metastatic phenotype. Surprisingly, the contribution of Ig-SF members to metastasis has not received the attention afforded other cell adhesion molecules (CAMs) such as the integrins. Here we examine the steps in the metastatic pathway focusing on how the Ig-SF members, melanoma cell adhesion molecule (MCAM), L1CAM, neural CAM (NCAM), leukocyte CAM (ALCAM), intercellular CAM-1 (ICAM-1) and platelet endothelial CAM-1 (PECAM-1) could play a role. Although much remains to be understood, this review aims to raise the profile of Ig-SF members in metastasis formation and prompt further research that could lead to useful clinical outcomes.


Author(s):  
Peter Sonderegger ◽  
Stefan Kunz ◽  
Christoph Rader ◽  
Daniel M. Suter ◽  
Esther T. Stoeckli

Sign in / Sign up

Export Citation Format

Share Document