scholarly journals Chemokine receptors CCR2 and CX3CR1 regulate viral encephalitis-induced hippocampal damage but not seizures

2018 ◽  
Vol 115 (38) ◽  
pp. E8929-E8938 ◽  
Author(s):  
Christopher Käufer ◽  
Chintan Chhatbar ◽  
Sonja Bröer ◽  
Inken Waltl ◽  
Luca Ghita ◽  
...  

Viral encephalitis is a major risk factor for the development of seizures, epilepsy, and hippocampal damage with associated cognitive impairment, markedly reducing quality of life in survivors. The mechanisms underlying seizures and hippocampal neurodegeneration developing during and after viral encephalitis are only incompletely understood, hampering the development of preventive treatments. Recent findings suggest that brain invasion of blood-born monocytes may be critically involved in both seizures and brain damage in response to encephalitis, whereas the relative role of microglia, the brain’s resident immune cells, in these processes is not clear. CCR2 and CX3CR1 are two chemokine receptors that regulate the responses of myeloid cells, such as monocytes and microglia, during inflammation. We used Ccr2-KO and Cx3cr1-KO mice to understand the role of these receptors in viral encephalitis-associated seizures and neurodegeneration, using the Theiler’s virus model of encephalitis in C57BL/6 mice. Our results show that CCR2 as well as CX3CR1 plays a key role in the accumulation of myeloid cells in the CNS and activation of hippocampal myeloid cells upon infection. Furthermore, by using Cx3cr1-creER+/−tdTomatoSt/Wt reporter mice, we show that, with regard to CD45 and CD11b expression, some microglia become indistinguishable from monocytes during CNS infection. Interestingly, the lack of CCR2 or CX3CR1 receptors was associated with almost complete prevention of hippocampal damage but did not prevent seizure development after viral CNS infection. These data are compatible with the hypothesis that CNS inflammatory mechanism(s) other than the infiltrating myeloid cells trigger the development of seizures during viral encephalitis.

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 796
Author(s):  
Christian Kirschneck ◽  
Nadine Straßmair ◽  
Fabian Cieplik ◽  
Eva Paddenberg ◽  
Jonathan Jantsch ◽  
...  

During orthodontic tooth movement, transcription factor hypoxia-inducible factor 1α (HIF1α) is stabilised in the periodontal ligament. While HIF1α in periodontal ligament fibroblasts can be stabilised by mechanical compression, in macrophages pressure application alone is not sufficient to stabilise HIF1α. The present study was conducted to investigate the role of myeloid HIF1α during orthodontic tooth movement. Orthodontic tooth movement was performed in wildtype and Hif1αΔmyel mice lacking HIF1α expression in myeloid cells. Subsequently, µCT images were obtained to determine periodontal bone loss, extent of orthodontic tooth movement and bone density. RNA was isolated from the periodontal ligament of the control side and the orthodontically treated side, and the expression of genes involved in bone remodelling was investigated. The extent of tooth movement was increased in Hif1αΔmyel mice. This may be due to the lower bone density of the Hif1αΔmyel mice. Deletion of myeloid Hif1α was associated with increased expression of Ctsk and Acp5, while both Rankl and its decoy receptor Opg were increased. HIF1α from myeloid cells thus appears to play a regulatory role in orthodontic tooth movement.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1812
Author(s):  
Karol Augustowski ◽  
Józef Kukulak

The rate of bank retreat was measured using erosion pins on the alluvial banks of the rivers in the Podhale region (the boundary zone between Central and Outer Carpathians) during the hydrological year 2013/2014. During the winter half-year (November–April), the bank retreat was mainly caused by processes related to the freezing and thawing of the ground (swelling, creep, downfall). During the summer half-year (May–October), fluvial processes and mass movements such as lateral erosion, washing out, and sliding predominated. The share of fluvial processes in the total annual amount of bank retreat (71 cm on average) was 4 times greater than that of the frost phenomena. Erosion on bank surfaces by frost phenomena during the cold half-year was greatest (up to 38 cm) on the upper parts of banks composed of fine-grained alluvium, while fluvial erosion during the summer half-year (exceeding 80 cm) mostly affected the lower parts of the banks, composed of gravel. The precise calculation of the relative role of frost phenomena in the annual balance of bank erosion was precluded at some stations by the loss of erosion pins in the summer flood.


2002 ◽  
Vol 751 ◽  
Author(s):  
Qinglei Wang ◽  
Guoda D. Lian ◽  
Elizabeth C. Dickey

ABSTRACTSolute segregation to grain boundaries is a fundamental phenomenon in polycrystalline metal-oxide electroceramics that has enormous implications for the macroscopic dielectric behavior of the materials. This paper presents a systematic study of solute segregation in a model dielectric, titanium dioxide. We investigate the relative role of the electrostatic versus strain energy driving forces for segregation by studying yttrium-doped specimens. Through analytical transmission electron microscopy studies, we quantitatively determine the segregation behavior of the material. The measured Gibbsian interfacial excesses are compared to thermodynamic predictions.


2009 ◽  
Vol 52 (6) ◽  
pp. 855-868 ◽  
Author(s):  
DuanYang Xu ◽  
XiangWu Kang ◽  
ZhiLi Liu ◽  
DaFang Zhuang ◽  
JianJun Pan

Sign in / Sign up

Export Citation Format

Share Document