scholarly journals Describing strong correlation with fractional-spin correction in density functional theory

2018 ◽  
Vol 115 (39) ◽  
pp. 9678-9683 ◽  
Author(s):  
Neil Qiang Su ◽  
Chen Li ◽  
Weitao Yang

An effective fractional-spin correction is developed to describe static/strong correlation in density functional theory. Combined with the fractional-charge correction from recently developed localized orbital scaling correction (LOSC), a functional, the fractional-spin LOSC (FSLOSC), is proposed. FSLOSC, a correction to commonly used functional approximations, introduces the explicit derivative discontinuity and largely restores the flat-plane behavior of electronic energy at fractional charges and fractional spins. In addition to improving results from conventional functionals for the prediction of ionization potentials, electron affinities, quasiparticle spectra, and reaction barrier heights, FSLOSC properly describes the dissociation of ionic species, single bonds, and multiple bonds without breaking space or spin symmetry and corrects the spurious fractional-charge dissociation of heteroatom molecules of conventional functionals. Thus, FSLOSC demonstrates success in reducing delocalization error and including strong correlation, within low-cost density functional approximation.

2018 ◽  
Author(s):  
Jörg Saßmannshausen

We report detailed Density Functional Theory (DFT) investigations of a series of structurally similar titanium (IV) chelating σ-aryl catalysts. Particular attention was paid to the electronic charges of the Ti, C ipso of the substituted aryl group and the benzylic CH<sub>2</sub> and C<i><sub>ipso</sub></i> atoms. The Bader and NBO derived charges were compared with the recently reported polymerisation results by Chan. We found a strong correlation between the relative energies of one of the computed isomers and the activity of the catalyst. Neither NBO nor Bader charges could be convincingly correlated to the observed activity.


Author(s):  
Vladimir Tsirelson ◽  
Adam Stash

This work extends the orbital-free density functional theory to the field of quantum crystallography. The total electronic energy is decomposed into electrostatic, exchange, Weizsacker and Pauli components on the basis of physically grounded arguments. Then, the one-electron Euler equation is re-written through corresponding potentials, which have clear physical and chemical meaning. Partial electron densities related with these potentials by the Poisson equation are also defined. All these functions were analyzed from viewpoint of their physical content and limits of applicability. Then, they were expressed in terms of experimental electron density and its derivatives using the orbital-free density functional theory approximations, and applied to the study of chemical bonding in a heteromolecular crystal of ammonium hydrooxalate oxalic acid dihydrate. It is demonstrated that this approach allows the electron density to be decomposed into physically meaningful components associated with electrostatics, exchange, and spin-independent wave properties of electrons or with their combinations in a crystal. Therefore, the bonding information about a crystal that was previously unavailable for X-ray diffraction analysis can be now obtained.


Nanoscale ◽  
2018 ◽  
Vol 10 (33) ◽  
pp. 15696-15705 ◽  
Author(s):  
Fengyu Li ◽  
Zhongfang Chen

By means of density functional theory (DFT) computations, we systemically investigated CO/O2 adsorption and CO oxidation pathways on a bi-atom catalyst, namely, a copper dimer anchored on a C2N monolayer (Cu2@C2N), and we compared it with its monometallic counterpart Cu1@C2N.


2018 ◽  
Vol 20 (45) ◽  
pp. 28903-28909 ◽  
Author(s):  
Junais Habeeb Mokkath

Plasmonic nanostructures made of Earth-abundant and low-cost metals such as aluminum and magnesium have recently emerged as a potential alternative candidate to conventional plasmonic metals such as gold and silver.


2020 ◽  
Author(s):  
Tim Gould ◽  
Gianluca Stefanucci ◽  
Stefano Pittalis

Density functional theory can be generalized to mixtures of ground and excited states, for the purpose of determining energies of excitations using low-cost density functional approximations. Adapting approximations originally developed for ground states to work in the new setting would fast-forward progress enormously. But, previous attempts have stumbled on daunting fundamental issues. Here we show that these issues can be prevented from the outset, by using a fluctuation dissipation theorem (FDT) to dictate key functionals. We thereby show that existing exchange energy approximations are readily adapted to excited states, when combined with a rigorous exact Hartree term that is different in form from its ground state counterpart, and counterparts based on ensemble ansatze. Applying the FDT to correlation energies also provides insights into ground state-like and ensemble-only correlations. We thus provide a comprehensive and versatile framework for ensemble density functional approximations.<br><br>


2020 ◽  
Author(s):  
Tim Gould

Recent theory developments in ensemble density functional theory (EDFT) promise to bring decades of work for ground-states to the practical resolution of excited-states - provided newly-discovered "density-driven correlations" can be dealt with and adequate effective potentials can be found. This Letter introduces simple theories for both; and shows that EDFT using these theories outperforms ΔSCF DFT and time-dependent DFT for low-lying gaps in most of the small atoms and molecules tested, even when all use the same density functional approximations. It thus establishes EDFT as a promising tool for low-cost studies of excited states; and provides a clear route to practical EDFT implementation of arbitrary functional approximations.<br><br>


Sign in / Sign up

Export Citation Format

Share Document