scholarly journals Intersexual conflict over seed size is stronger in more outcrossed populations of a mixed-mating plant

2018 ◽  
Vol 115 (45) ◽  
pp. 11561-11566 ◽  
Author(s):  
Astrid Raunsgard ◽  
Øystein H. Opedal ◽  
Runa K. Ekrem ◽  
Jonathan Wright ◽  
Geir H. Bolstad ◽  
...  

In polyandrous species, fathers benefit from attracting greater maternal investment toward their offspring at the expense of the offspring of other males, while mothers should usually allocate resources equally among offspring. This conflict can lead to an evolutionary arms race between the sexes, manifested through antagonistic genes whose expression in offspring depends upon the parent of origin. The arms race may involve an increase in the strength of maternally versus paternally derived alleles engaged in a “tug of war” over maternal provisioning or repeated “recognition-avoidance” coevolution where growth-enhancing paternally derived alleles evolve to escape recognition by maternal genes targeted to suppress their effect. Here, we develop predictions to distinguish between these two mechanisms when considering crosses among populations that have reached different equilibria in this intersexual arms race. We test these predictions using crosses within and among populations ofDalechampia scandens(Euphorbiaceae) that presumably have experienced different intensities of intersexual conflict, as inferred from their historical differences in mating system. In crosses where the paternal population was more outcrossed than the maternal population, hybrid seeds were larger than those normally produced in the maternal population, whereas when the maternal population was more outcrossed, hybrid seeds were smaller than normal. These results confirm the importance of mating systems in determining the intensity of intersexual conflict over maternal investment and provide strong support for a tug-of-war mechanism operating in this conflict. They also yield clear predictions for the fitness consequences of gene flow among populations with different mating histories.

2017 ◽  
Vol 284 (1860) ◽  
pp. 20171347 ◽  
Author(s):  
Kate E. Ihle ◽  
Pascale Hutter ◽  
Barbara Tschirren

Inbreeding depression refers to the reduction of fitness that results from matings between relatives. Evidence for reduced fitness in inbred individuals is widespread, but the strength of inbreeding depression varies widely both within and among taxa. Environmental conditions can mediate this variation in the strength of inbreeding depression, with environmental stress exacerbating the negative consequences of inbreeding. Parents can modify the environment experienced by offspring, and have thus the potential to mitigate the negative consequences of inbreeding. While such parental effects have recently been demonstrated during the postnatal period, the role of prenatal parental effects in influencing the expression of inbreeding depression remains unexplored. To address this gap, we performed matings between full-sibs or unrelated individuals in replicated lines of Japanese quail ( Coturnix japonica ) experimentally selected for high and low maternal egg provisioning. We show that in the low maternal investment lines hatching success was strongly reduced when parents were related. In the high maternal investment lines, however, this negative effect of inbreeding on hatching success was absent, demonstrating that prenatal maternal provisioning can alleviate the negative fitness consequences of inbreeding.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

The risks of inbreeding and outbreeding depression, and the prospects for genetic rescue are often different in species with alternative mating systems and mode of inheritance (compared to outbreeding diploids), such as self-incompatible, self-fertilizing, mixed mating, non-diploid (haploid, haplodiploid and polyploid) and asexual.


Ecology ◽  
2015 ◽  
Vol 96 (9) ◽  
pp. 2499-2509 ◽  
Author(s):  
Michael P. Moore ◽  
Tobias Landberg ◽  
Howard H. Whiteman

Evolution ◽  
2018 ◽  
Vol 72 (11) ◽  
pp. 2513-2536 ◽  
Author(s):  
Madeline A. E. Peters ◽  
Arthur E. Weis

2007 ◽  
Vol 55 (3) ◽  
pp. 239 ◽  
Author(s):  
David J. Coates ◽  
Jane F. Sampson ◽  
Colin J. Yates

Population size and habitat disturbance are key factors likely to shape the mating system of populations in disturbed and fragmented landscapes. They would be expected to influence the availability and behaviour of the pollinator, the ability to find mates in self-incompatible species, inbreeding in self-compatible species and the size of the pollen pool. These in turn might be expected to influence key variables critical for population persistence such as seed production, seed germination and seedling fitness. Here we investigate mating-system variation in six rare species, i.e. Banksia cuneata, B. oligantha, Lambertia orbifolia (Proteaceae), Verticordia fimbrilepis subsp. fimbrilepis, Eucalyptus rameliana (Myrtaceae), Acacia sciophanes (Mimosaceae), and two common species, i.e. Calothamnus quadrifidus (Myrtaceae) and Acacia anfractuosa. All seven species are animal-pollinated relatively long-lived woody shrubs with mixed-mating systems. Population variation in mating-system parameters was investigated in relation to population size and habitat disturbance. We show that although the mating system will vary depending on pollination biology and life-history, as populations get smaller and habitat disturbance increases there is a trend towards increased inbreeding, smaller effective sizes of paternal pollen pools and greater variation in outcrossing among plants. From the species investigated in this study we have found that changes in the mating system can be useful indicators of population processes and can give valuable insight into the development of conservation strategies for the persistence of plant species following anthropogenic disturbance and landscape fragmentation.


Genetics ◽  
1980 ◽  
Vol 96 (1) ◽  
pp. 275-296
Author(s):  
Richard E Michod

ABSTRACT The effect of inbreeding on sociality is studied theoretically for the evolution of interactions between siblings in certain mixed mating systems that give rise to inbreeding: sib with random mating and selfing with random mating. Two approaches are taken. First, specific models of altruism are studied for the various mating systems. In the case of the additive model, inbreeding facilitates the evolution of altruistic genes. Likewise, for the multiplicative model this is usually the case, as long as the costs of altruism are not too great. Second, the case of total altruism, in which the gene has zero individual fitness but increases the fitness of associates, is studied for a general fitness formulation. In this case, inbreeding often retards the ability of such genes to increase when rare, and the equilibrium frequency of those recessive genes that can increase is totally independent of the mating system and, consequently, of the amount of inbreeding. It appears from the results presented that inbreeding facilitates most forms of altruism, but retards extreme altruism. These results stem from the fact that inbreeding increases the within-family relatedness by increasing the between-family variance in allele frequency. In most cases this facilitates altruism. However, in the case of total altruism, only heterozygotes can pass on the altruistic allele, and inbreeding tends to decrease this heterozygote class. In either case, the important effect of inbreeding lies in altering the genotypic distribution of the interactions.


2006 ◽  
Vol 2 (2) ◽  
pp. 253-256 ◽  
Author(s):  
Reinmar Hager ◽  
Rufus A Johnstone

Recent studies on mammals investigating parent-of-origin-specific effects such as genomic imprinting and maternal effects have demonstrated their impact on short-term measures of fitness, for example offspring growth. However, the long-term fitness consequences of parent-of-origin-specific effects and their role outside the immediate mother–offspring interaction remain largely unexplored. Here, we show that female mice mated to males that inherited the same set of paternal and maternal genes as themselves have a higher reproductive success than females mated to males of reciprocal genotype. Furthermore, we demonstrate that the early social environment experienced by an individual influences its reproductive success. Females raised with unrelated siblings in a mixed litter had a subsequent lower reproductive success than those that were fostered together with all their biological siblings in unmixed litters. Our results highlight the important influence of parent-of-origin-specific effects and conditions in early development on long-term reproductive success in mammals and suggest that parent-of-origin-specific effects may provide the underlying mechanism for beneficial coadaptation between genotypes, for example, in mate choice.


Sign in / Sign up

Export Citation Format

Share Document