scholarly journals Selection for pollen competitive ability in mixed-mating systems

Evolution ◽  
2018 ◽  
Vol 72 (11) ◽  
pp. 2513-2536 ◽  
Author(s):  
Madeline A. E. Peters ◽  
Arthur E. Weis
2017 ◽  

ABSTRACTCo-expression of genes in plant sporophytes and gametophytes allows correlated gametic and sporophytic selection. Theory predicts that, under outcrossing, an allele conferring greater pollen competitive ability should fix within a population unless antagonistic pleiotropy with the sporophyte stage is strong. However, under strong selfing, pollen competitiveness is immaterial as superior and inferior competitors are deposited on opposite stigmas, producing assortative competition. Because many plant species have mixed-mating systems, selfing should be critical in the spread and maintenance of pollen-expressed genes affecting competitiveness. We present two one-locus, two-allele population genetic models for the evolution of a locus controlling pleiotropic antagonism between pollen competitiveness and diploid fitness. Analytical solutions provide minimum and maximum selfing rates allowing invasion of alleles with greater diploid and haploid fitness respectively. Further, polymorphism is only maintained when diploid selection is recessive. Fixation of the allele conferring greater pollen competitiveness may be prevented, even with weak sporophytic counter-selection, with sufficiently high selfing. Finally, selfing expands and limits the range of haploid-diploid selection coefficients allowing polymorphism, depending on dominance and selfing mode.


2020 ◽  
Author(s):  
Sviatoslav Rybnikov ◽  
Daniel B. Weissman ◽  
Sariel Hübner ◽  
Abraham B. Korol

AbstractMeiotic recombination and the factors affecting its rate and fate in nature have inspired many theoretical studies in evolutionary biology. Classical theoretical models have inferred that non-zero recombination can be favoured under a rather restricted parameter range. Thus, the ubiquity of recombination in nature remains an open question. However, these models assumed constant (uniform) recombination with an equal rate across all individuals within the population. Models of fitness-dependent recombination, with the rate varying among genotypes according to their fitness have shown that such a strategy can often be favoured over the best constant recombination. Here we use simulations to show that across a range of mating systems with varying frequencies of selfing and clonality, fitness-dependent recombination is often favoured even when any non-zero constant recombination is disfavoured. This recombination-protecting effect of fitness dependence is strongest under intermediate rates of selfing or high rates of clonality.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

The risks of inbreeding and outbreeding depression, and the prospects for genetic rescue are often different in species with alternative mating systems and mode of inheritance (compared to outbreeding diploids), such as self-incompatible, self-fertilizing, mixed mating, non-diploid (haploid, haplodiploid and polyploid) and asexual.


2021 ◽  
pp. 110849
Author(s):  
Sviatoslav Rybnikov ◽  
Daniel B. Weissman ◽  
Sariel Hübner ◽  
Abraham B. Korol

2006 ◽  
Vol 35 ◽  
pp. 247-250
Author(s):  
H. Randle ◽  
E. Elworthy

The influence of Natural Selection on the evolution of the horse (Equus callabus) is minimal due to its close association with humans. Instead Artificial Selection is commonly imposed through selection for features such as a ‘breed standard’ or competitive ability. It has long been considered to be useful if indicators of characteristics such as physical ability could be identified. Kidd (1902) suggested that the hair coverings of animals were closely related to their lifestyle, whether they were active or passive. In 1973 Smith and Gong concluded that hair whorl (trichloglyph) pattern and human behaviour is linked since hair patterning is determined at the same time as the brain develops in the foetus. More recently Grandin et al. (1995), Randle (1998) and Lanier et al. (2001) linked features of facial hair whorls to behaviour and production in cattle. Hair whorl features have also been related to temperament in equines (Randle et al., 2003).


2007 ◽  
Vol 55 (3) ◽  
pp. 239 ◽  
Author(s):  
David J. Coates ◽  
Jane F. Sampson ◽  
Colin J. Yates

Population size and habitat disturbance are key factors likely to shape the mating system of populations in disturbed and fragmented landscapes. They would be expected to influence the availability and behaviour of the pollinator, the ability to find mates in self-incompatible species, inbreeding in self-compatible species and the size of the pollen pool. These in turn might be expected to influence key variables critical for population persistence such as seed production, seed germination and seedling fitness. Here we investigate mating-system variation in six rare species, i.e. Banksia cuneata, B. oligantha, Lambertia orbifolia (Proteaceae), Verticordia fimbrilepis subsp. fimbrilepis, Eucalyptus rameliana (Myrtaceae), Acacia sciophanes (Mimosaceae), and two common species, i.e. Calothamnus quadrifidus (Myrtaceae) and Acacia anfractuosa. All seven species are animal-pollinated relatively long-lived woody shrubs with mixed-mating systems. Population variation in mating-system parameters was investigated in relation to population size and habitat disturbance. We show that although the mating system will vary depending on pollination biology and life-history, as populations get smaller and habitat disturbance increases there is a trend towards increased inbreeding, smaller effective sizes of paternal pollen pools and greater variation in outcrossing among plants. From the species investigated in this study we have found that changes in the mating system can be useful indicators of population processes and can give valuable insight into the development of conservation strategies for the persistence of plant species following anthropogenic disturbance and landscape fragmentation.


Genetics ◽  
1980 ◽  
Vol 96 (1) ◽  
pp. 275-296
Author(s):  
Richard E Michod

ABSTRACT The effect of inbreeding on sociality is studied theoretically for the evolution of interactions between siblings in certain mixed mating systems that give rise to inbreeding: sib with random mating and selfing with random mating. Two approaches are taken. First, specific models of altruism are studied for the various mating systems. In the case of the additive model, inbreeding facilitates the evolution of altruistic genes. Likewise, for the multiplicative model this is usually the case, as long as the costs of altruism are not too great. Second, the case of total altruism, in which the gene has zero individual fitness but increases the fitness of associates, is studied for a general fitness formulation. In this case, inbreeding often retards the ability of such genes to increase when rare, and the equilibrium frequency of those recessive genes that can increase is totally independent of the mating system and, consequently, of the amount of inbreeding. It appears from the results presented that inbreeding facilitates most forms of altruism, but retards extreme altruism. These results stem from the fact that inbreeding increases the within-family relatedness by increasing the between-family variance in allele frequency. In most cases this facilitates altruism. However, in the case of total altruism, only heterozygotes can pass on the altruistic allele, and inbreeding tends to decrease this heterozygote class. In either case, the important effect of inbreeding lies in altering the genotypic distribution of the interactions.


2009 ◽  
Vol 6 (1) ◽  
pp. 24-26 ◽  
Author(s):  
Ines Klemme ◽  
Hannu Ylönen

The adaptive significance of polyandry is an intensely debated subject in sexual selection. For species with male infanticidal behaviour, it has been hypothesized that polyandry evolved as female counterstrategy to offspring loss: by mating with multiple males, females may conceal paternity and so prevent males from killing putative offspring. Here we present, to our knowledge, the first empirical test of this hypothesis in a combined laboratory and field study, and show that multiple mating seems to reduce the risk of infanticide in female bank voles Myodes glareolus . Our findings thus indicate that females of species with non-resource based mating systems, in which males provide nothing but sperm, but commit infanticide, can gain non-genetic fitness benefits from polyandry.


2019 ◽  
Vol 31 (2) ◽  
pp. 411-420
Author(s):  
Sergio Nolazco ◽  
Michelle L Hall ◽  
Sjouke A Kingma ◽  
Kaspar Delhey ◽  
Anne Peters

Abstract The evolution of ornaments as sexually selected signals is well understood in males, but female ornamentation remains understudied. Fairy wrens offer an excellent model system, given their complex social structure and mating systems, and the diversity of female ornamentation. We investigated whether early molt into ornamental breeding plumage plays an adaptive role in females of the monogamous purple-crowned fairy wren Malurus coronatus, the only fairy wren known to have female seasonal plumage. Using 6 years of monitoring, we found that the timing of female molt was similar to males, but there was no evidence for assortative mating. Like males (previous study), older and dominant individuals acquired their breeding plumage earlier; however, in contrast to males, early molt did not seem to be costly since unfavorable environmental conditions or previous reproductive effort did not delay molt. Early female molt was not associated with any indicator of reproductive quality nor did it attract additional offspring care by their partners. We also found no association between early molt and the likelihood of acquiring a dominant (breeding) position or with the presence or proximity to same-sex rivals. Our study results, which are similar to previous findings in conspecific males, suggest that directional selection for early molt might be relaxed in this species, in contrast to other genetically polygamous fairy wrens in which early molt predicts extrapair mating success in males. However, the finding that molt timing is status dependent raises the possibility that other attributes of the ornament may fulfill an adaptive function in females.


Sign in / Sign up

Export Citation Format

Share Document