scholarly journals Cell-free gene-regulatory network engineering with synthetic transcription factors

2019 ◽  
Vol 116 (13) ◽  
pp. 5892-5901 ◽  
Author(s):  
Zoe Swank ◽  
Nadanai Laohakunakorn ◽  
Sebastian J. Maerkl

Gene-regulatory networks are ubiquitous in nature and critical for bottom-up engineering of synthetic networks. Transcriptional repression is a fundamental function that can be tuned at the level of DNA, protein, and cooperative protein–protein interactions, necessitating high-throughput experimental approaches for in-depth characterization. Here, we used a cell-free system in combination with a high-throughput microfluidic device to comprehensively study the different tuning mechanisms of a synthetic zinc-finger repressor library, whose affinity and cooperativity can be rationally engineered. The device is integrated into a comprehensive workflow that includes determination of transcription-factor binding-energy landscapes and mechanistic modeling, enabling us to generate a library of well-characterized synthetic transcription factors and corresponding promoters, which we then used to build gene-regulatory networks de novo. The well-characterized synthetic parts and insights gained should be useful for rationally engineering gene-regulatory networks and for studying the biophysics of transcriptional regulation.

2018 ◽  
Author(s):  
Zoe Swank ◽  
Nadanai Laohakunakorn ◽  
Sebastian J. Maerkl

AbstractGene regulatory networks are ubiquitous in nature and critical for bottom-up engineering of synthetic networks. Transcriptional repression is a fundamental function that can be tuned at the level of DNA, protein, and cooperative protein – protein interactions, necessitating high-throughput experimental approaches for in-depth characterization. Here we used a cell-free system in combination with a high-throughput microfluidic device to comprehensively study the different tuning mechanisms of a synthetic zinc-finger repressor library, whose affinity and cooperativity can be rationally engineered. The device is integrated into a comprehensive workflow that includes determination of transcription factor binding energy landscapes and mechanistic modeling, enabling us to generate a library of well-characterized synthetic transcription factors and corresponding promoters, which we then used to build gene regulatory networks de novo. The well-characterized synthetic parts and insights gained should be useful for rationally engineering gene regulatory networks and for studying the biophysics of transcriptional regulation.


Author(s):  
Peter J. Bentley

Fractal proteins are a new evolvable method of mapping genotype to phenotype through a developmental process, where genes are expressed into proteins comprised of subsets of the Mandelbrot set. The resulting network of gene and protein interactions can be designed by evolution to produce specific patterns, which in turn can be used to solve problems. This chapter introduces the fractal development algorithm in detail and describes the use of fractal gene regulatory networks for learning a robot path through a series of obstacles. The results indicate the ability of this system to learn regularities in solutions and automatically create and use modules.


Author(s):  
Alexander Lalejini ◽  
Charles Ofria

Tags are evolvable labels that provide genetic programs a flexible mechanism for specification. Tags are used to label and refer to programmatic elements, such as functions or jump targets. However, tags differ from traditional, more rigid methods for handling labeling because they allow for inexact references; that is, a referring tag need not exactly match its referent. Here, we explore how adjusting the threshold for how what qualifies as a match affects adaptive evolution. Further, we propose broadened applications of tags in the context of a genetic programming (GP) technique called SignalGP. SignalGP gives evolution direct access to the event-driven paradigm. Program modules in SignalGP are tagged and can be triggered by signals (with matching tags) from the environment, from other agents, or due to internal regulation. Specifically, we propose to extend this tag based system to: (1) provide more fine-grained control over module execution and regulation (e.g., promotion and repression) akin to natural gene regulatory networks, (2) employ a mosaic of GP representations within a single program, and (3) facilitate major evolutionary transitions in individuality (i.e., allow hierarchical program organization to evolve de novo).


2016 ◽  
Vol 113 (13) ◽  
pp. E1835-E1843 ◽  
Author(s):  
Mina Fazlollahi ◽  
Ivor Muroff ◽  
Eunjee Lee ◽  
Helen C. Causton ◽  
Harmen J. Bussemaker

Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae. We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors.


2020 ◽  
Author(s):  
Pallavi Singh ◽  
Sean R. Stevenson ◽  
Ivan Reyna-Llorens ◽  
Gregory Reeves ◽  
Tina B. Schreier ◽  
...  

ABSTRACTThe efficient C4 pathway is based on strong up-regulation of genes found in C3 plants, but also compartmentation of their expression into distinct cell-types such as the mesophyll and bundle sheath. Transcription factors associated with these phenomena have not been identified. To address this, we undertook genome-wide analysis of transcript accumulation, chromatin accessibility and transcription factor binding in C4Gynandropsis gynandra. From these data, two models relating to the molecular evolution of C4 photosynthesis are proposed. First, increased expression of C4 genes is associated with increased binding by MYB-related transcription factors. Second, mesophyll specific expression is associated with binding of homeodomain transcription factors. Overall, we conclude that during evolution of the complex C4 trait, C4 cycle genes gain cis-elements that operate in the C3 leaf such that they become integrated into existing gene regulatory networks associated with cell specificity and photosynthesis.


Disputatio ◽  
2017 ◽  
Vol 9 (47) ◽  
pp. 499-527
Author(s):  
Dana Matthiessen

Abstract In this paper I analyze the process by which modelers in systems biology arrive at an adequate representation of the biological structures thought to underlie data gathered from high-throughput experiments. Contrary to views that causal claims and explanations are rare in systems biology, I argue that in many studies of gene regulatory networks modelers aim at a representation of causal structure. In addressing modeling challenges, they draw on assumptions informed by theory and pragmatic considerations in a manner that is guided by an interventionist conception of causal structure. While doubts have been raised about the applicability of this notion of causality to complex biological systems, it is here seen to be an adequate guide to inquiry.


Sign in / Sign up

Export Citation Format

Share Document