Gene/Protein Interactions — Modeling Gene Regulatory Networks (GRN)

Author(s):  
Lubica Benuskova ◽  
Nikola Kasabov
Author(s):  
Peter J. Bentley

Fractal proteins are a new evolvable method of mapping genotype to phenotype through a developmental process, where genes are expressed into proteins comprised of subsets of the Mandelbrot set. The resulting network of gene and protein interactions can be designed by evolution to produce specific patterns, which in turn can be used to solve problems. This chapter introduces the fractal development algorithm in detail and describes the use of fractal gene regulatory networks for learning a robot path through a series of obstacles. The results indicate the ability of this system to learn regularities in solutions and automatically create and use modules.


2019 ◽  
Vol 116 (13) ◽  
pp. 5892-5901 ◽  
Author(s):  
Zoe Swank ◽  
Nadanai Laohakunakorn ◽  
Sebastian J. Maerkl

Gene-regulatory networks are ubiquitous in nature and critical for bottom-up engineering of synthetic networks. Transcriptional repression is a fundamental function that can be tuned at the level of DNA, protein, and cooperative protein–protein interactions, necessitating high-throughput experimental approaches for in-depth characterization. Here, we used a cell-free system in combination with a high-throughput microfluidic device to comprehensively study the different tuning mechanisms of a synthetic zinc-finger repressor library, whose affinity and cooperativity can be rationally engineered. The device is integrated into a comprehensive workflow that includes determination of transcription-factor binding-energy landscapes and mechanistic modeling, enabling us to generate a library of well-characterized synthetic transcription factors and corresponding promoters, which we then used to build gene-regulatory networks de novo. The well-characterized synthetic parts and insights gained should be useful for rationally engineering gene-regulatory networks and for studying the biophysics of transcriptional regulation.


2018 ◽  
Author(s):  
Zoe Swank ◽  
Nadanai Laohakunakorn ◽  
Sebastian J. Maerkl

AbstractGene regulatory networks are ubiquitous in nature and critical for bottom-up engineering of synthetic networks. Transcriptional repression is a fundamental function that can be tuned at the level of DNA, protein, and cooperative protein – protein interactions, necessitating high-throughput experimental approaches for in-depth characterization. Here we used a cell-free system in combination with a high-throughput microfluidic device to comprehensively study the different tuning mechanisms of a synthetic zinc-finger repressor library, whose affinity and cooperativity can be rationally engineered. The device is integrated into a comprehensive workflow that includes determination of transcription factor binding energy landscapes and mechanistic modeling, enabling us to generate a library of well-characterized synthetic transcription factors and corresponding promoters, which we then used to build gene regulatory networks de novo. The well-characterized synthetic parts and insights gained should be useful for rationally engineering gene regulatory networks and for studying the biophysics of transcriptional regulation.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3832-3832
Author(s):  
Stanley W.K. Ng ◽  
Stephanie Zhi-Juan Xie ◽  
Elvin Wagenblast ◽  
Naoya Takayama ◽  
Liqing Jin ◽  
...  

Abstract The gene regulatory networks (GRN) governing maintenance and expansion of normal and leukemic human hematopoietic stem-cells (HSC and LSC) are not well understood. Typically, GRNs are inferred from gene expression (GE) data of a limited subset of pre-selected genes implicated to be relevant to the cell types being studied. Such data are commonly derived from relatively homogeneous cell populations or cell lines, which do not reflect the heterogeneity of primary human samples. Importantly, there are currently no GRNs that directly interrogate the transcriptional circuitry controlling human HSC/LSC. To gain insight into the determinants of stem cell function in human HSC/LSC, we developed a unique method for building GRNs that employs GE and chromatin accessibility (ATAC-Seq) data derived from n=17 highly purified human umbilical cord blood hematopoietic stem and progenitor cell populations (hUCB-HSPC) and n=64 functionally-validated LSC-enriched and LSC-depleted cell fractions sorted from AML patient samples. Estimates of HSC/LSC frequencies based on limiting dilution xenotransplantation assays were also incorporated with statistical learning approaches to infer GRN models. Specifically, we determined transcription factor (TF) motif occurrence in HSC/LSC-enriched open chromatin regions near genes that are more highly expressed in stem versus non-stem profiles (P<0.05) to identify TF-target gene interactions in HSCs and LSCs. The effect of specific TF binding on target GE was modelled using statistical regression. A database comprising n=8,927 and n=7,916 HSC and LSC specific TF-target gene relationships, respectively, was constructed. Importantly, only a small set of n=95 TF-target gene interactions overlapped between HSC and LSC, suggesting divergent regulatory rules governing stemness maintenance, as well as differential downstream effects upon targeting of specific genes. Self-sustaining transcriptional loops between subsets of TFs were detected in HSC (ETS1, EGR1, RUNX2, FOSL1, ZNF274, ZNF683) and LSC (MEIS1, FOXK1) data, representing core regulatory hubs that are likely to be important to the maintenance of the HSC/LSC state. To determine how each gene in the transcriptome may interact with the core HSC and LSC networks, n=284,606 protein-protein interactions (PPI) between n=16,540 proteins were analyzed to define n=103,516 shortest PPI pathways connecting to the core HSC/LSC TFs. Statistical regression guided by functional data was used to identify likely HSC/LSC-relevant PPI pathway activity scores, defined as weighted combinations of constituent pathway component GE values, that were highly correlated to HSC/LSC frequency estimates from xenotransplantation assays. This generated 2 lists of n=9,948 and n=45,063 HSC- and LSC-relevant PPI pathways, respectively. We next analyzed these putative HSC/LSC-relevant pathways for points of perturbation (i.e. through gene knockdown (KD) or overexpression (OE)) that could lead to changes in stemness pathway activity scores and therefore potential HSC expansion or LSC eradication, resulting in a catalogue comprising n=976 and n=3,819 HSC and LSC targets, respectively. Prediction of several anti-LSC targets, including CDK6, XPO1, mir-126, CD47, and CD123, was supported by serial xenotransplantation data from our group and others. Furthermore, the HSC GRN correctly predicted increased HSC frequency as a consequence of mir-126 or CDK6 KD, or addition of a PROCR agonist to HSC-enriched hUCB or bone marrow. These functional validations of several GRN predictions support the overall validity of our model and accuracy of untested predictions. Collectively, we report a comprehensive resource for exploring the gene regulatory wiring and extended protein interactions that define the functional state of human HSC and LSC. The constructed GRNs can also serve as an in-silico screening platform for the systematic identification of gene/protein targets that can be exploited for clinical applications, including HSC expansion and LSC eradication. Disclosures Takayama: Megakaryon co. Ltd.: Research Funding. Zandstra:ExCellThera: Equity Ownership.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009638
Author(s):  
Francesco Mottes ◽  
Chiara Villa ◽  
Matteo Osella ◽  
Michele Caselle

This work studies the effects of the two rounds of Whole Genome Duplication (WGD) at the origin of the vertebrate lineage on the architecture of the human gene regulatory networks. We integrate information on transcriptional regulation, miRNA regulation, and protein-protein interactions to comparatively analyse the role of WGD and Small Scale Duplications (SSD) in the structural properties of the resulting multilayer network. We show that complex network motifs, such as combinations of feed-forward loops and bifan arrays, deriving from WGD events are specifically enriched in the network. Pairs of WGD-derived proteins display a strong tendency to interact both with each other and with common partners and WGD-derived transcription factors play a prominent role in the retention of a strong regulatory redundancy. Combinatorial regulation and synergy between different regulatory layers are in general enhanced by duplication events, but the two types of duplications contribute in different ways. Overall, our findings suggest that the two WGD events played a substantial role in increasing the multi-layer complexity of the vertebrate regulatory network by enhancing its combinatorial organization, with potential consequences on its overall robustness and ability to perform high-level functions like signal integration and noise control. Lastly, we discuss in detail the RAR/RXR pathway as an illustrative example of the evolutionary impact of WGD duplications in human.


2004 ◽  
Vol 381 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Gong-Hong WEI ◽  
De-Pei LIU ◽  
Chih-Chuan LIANG

One of the foremost challenges in the post-genomic era will be to chart the gene regulatory networks of cells, including aspects such as genome annotation, identification of cis-regulatory elements and transcription factors, information on protein–DNA and protein–protein interactions, and data mining and integration. Some of these broad sets of data have already been assembled for building networks of gene regulation. Even though these datasets are still far from comprehensive, and the approach faces many important and difficult challenges, some strategies have begun to make connections between disparate regulatory events and to foster new hypotheses. In this article we review several different genomics and proteomics technologies, and present bioinformatics methods for exploring these data in order to make novel discoveries.


2021 ◽  
Author(s):  
Francesco Mottes ◽  
Chiara Villa ◽  
Matteo Osella ◽  
Michele Caselle

This work studies the effects of the two rounds of Whole Genome Duplication (WGD) at the origin of the vertebrate lineage on the architecture of the human gene regulatory networks. We integrate information on transcriptional regulation, miRNA regulation, and protein-protein interactions to comparatively analyse the role of WGD and Small Scale Duplications (SSD) in the structural properties of the resulting multilayer network. We show that complex network motifs, such as combinations of feed-forward loops and bifan arrays, deriving from WGD events are specifically enriched in the network. Pairs of WGD-derived proteins display a strong tendency to interact both with each other and with common partners and WGD-derived transcription factors play a prominent role in the retention of a strong regulatory redundancy. Combinatorial regulation and synergy between different regulatory layers are in general enhanced by duplication events, but the two types of duplications contribute in different ways. Overall, our findings suggest that the two WGD events played a substantial role in increasing the multi-layer complexity of the vertebrate regulatory network by enhancing its combinatorial organization, with potential consequences on its overall robustness and ability to perform high-level functions like signal integration and noise control.


Sign in / Sign up

Export Citation Format

Share Document