scholarly journals Macromolecular relaxation, strain, and extensibility determine elastocapillary thinning and extensional viscosity of polymer solutions

2019 ◽  
Vol 116 (18) ◽  
pp. 8766-8774 ◽  
Author(s):  
Jelena Dinic ◽  
Vivek Sharma

Delayed capillary break-up of viscoelastic filaments presents scientific and technical challenges relevant for drop formation, dispensing, and adhesion in industrial and biological applications. The flow kinematics are primarily dictated by the viscoelastic stresses contributed by the polymers that are stretched and oriented in a strong extensional flow field resulting from the streamwise gradients created by the capillarity-driven squeeze flow. After an initial inertiocapillary (IC) or viscocapillary (VC) regime, where elastic effects seem to play no role, the interplay of capillarity and viscoelasticity can lead to an elastocapillary (EC) response characterized by exponentially-slow thinning of neck radius (extensional relaxation time is determined from the delay constant). Less frequently, a terminal visco-elastocapillary (TVEC) response with linear decay in radius can be observed and used for measuring terminal, steady extensional viscosity. However, both IC/VC–EC and EC–TVEC transitions are inaccessible in devices that create stretched necks by applying a step strain to a liquid bridge (e.g., capillary breakup extensional rheometer). In this study, we use dripping-onto-substrate rheometry to obtain radius evolution data for unentangled polymer solutions. We deduce that the plots of transient extensional viscosity vs. Hencky strain (scaled by the respective values at the EC–TVEC transition) emulate the functional form of the birefringence–macromolecular strain relationship based on Peterlin’s theory. We quantify the duration and strain between the IC/VC–EC and the EC–TVEC transitions using measures we term elastocapillary span and elastocapillary strain increment and find both measures show values directly correlated with the corresponding variation in extensional relaxation time.

1982 ◽  
Vol 120 ◽  
pp. 245-266 ◽  
Author(s):  
Simon L. Goren ◽  
Moshe Gottlieb

A linearized stability analysis is carried out for the breakup of small-diameter liquid filaments of dilute polymer solutions into droplets. Oldroyd's 8-constant model expressed in a corotational reference frame is used as the rheological equation of state. The crucial idea in this theory is the recognition that the liquid may be subject to an unrelaxed axial tension due to its prior history. If the tension is zero, the present analysis predicts that jets of shear-thinning liquids are less stable than comparable jets of Newtonian liquids; this is in agreement with previous analyses. However, when the axial tension is not zero, and provided the stress relaxation time constant is sufficiently large, the new theory predicts that the axial elastic tension can be a significant stabilizing influence. With reasonable values for the tension and stress relaxation time the theory explains the great stability observed for jets of some shear- thinning, dilute polymer solutions. The theory explains why drops produced from jets of such liquids are larger than drops from corresponding Newtonian liquids. The theory also appears capable of explaining the sudden appearance of irregularly spaced bulges on jets after long distances of t,ravel with little amplification of disturbances.


AIChE Journal ◽  
1975 ◽  
Vol 21 (6) ◽  
pp. 1225-1227 ◽  
Author(s):  
Chander Balakrishnan ◽  
R. J. Gordon

Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 406
Author(s):  
Chun-Dong Xue ◽  
Xiao-Dong Chen ◽  
Yong-Jiang Li ◽  
Guo-Qing Hu ◽  
Tun Cao ◽  
...  

Droplet microfluidics involving non-Newtonian fluids is of great importance in both fundamental mechanisms and practical applications. In the present study, breakup dynamics in droplet generation of semi-dilute polymer solutions in a microfluidic flow-focusing device were experimentally investigated. We found that the filament thinning experiences a transition from a flow-driven to a capillary-driven regime, analogous to that of purely elastic fluids, while the highly elevated viscosity and complex network structures in the semi-dilute polymer solutions induce the breakup stages with a smaller power-law exponent and extensional relaxation time. It is elucidated that the elevated viscosity of the semi-dilute solution decelerates filament thinning in the flow-driven regime and the incomplete stretch of polymer molecules results in the smaller extensional relaxation time in the capillary-driven regime. These results extend the understanding of breakup dynamics in droplet generation of non-Newtonian fluids and provide guidance for microfluidic synthesis applications involving dense polymeric fluids.


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 465-480 ◽  
Author(s):  
Stephane Jouenne ◽  
Guillaume Heurteux

Summary When injected at high flow rates in a porous medium, polymer solutions exhibit a resistance to flow that is a signature of chain conformation and size. For biopolymers, which exist in solution as semirigid rods, mobility reduction follows the shear-thinning behavior measured in shear flow on a rheometer. For flexible coils, such as hydrolyzed polyacrylamide (HPAM), flow thickening is observed in a porous medium, whereas bulk viscosity presents a shear-thinning behavior. This difference is the result of the complex flow experienced in the porous medium, combined with the viscoelastic properties at large strains of the solutions. In this study, we investigate the effect of physicochemical parameters such as salinity, polymer concentration, molecular weight, and degradation state on the mobility reduction in a porous medium at high flow rates. All the experiments are performed on a short-length, 4-darcy sintered ceramic core. The bell shape of the mobility-reduction curves (mobility reduction vs. flow rate) is characterized by three parameters: the onset rate of flow thickening (QC), the maximum of mobility reduction (Rmmax), and the flow rate at which this maximum occurs (Qmax). Curves are rescaled by use of the two groups, Rm/Rmmax and β×Q, where β accounts for the shift in Qmax when physicochemical conditions are varied. After rescaling, all the normalized mobility-reduction curves are superposed. We show that the two parameters Rmmax and β are not correlated with the bulk viscosity of the solutions but rather with their elasticity evaluated through screen-factor measurement. This old and rough measurement, widely used in the enhanced-oil-recovery (EOR) community to evaluate “solution elasticity,” is an indirect measurement of the extensional viscosity of polymer solutions. The pertinence and the physical meaning of this rough measurement are assessed through comparison with measurements performed on a newly developed extensional viscometer [EVROC™ (Extensional Viscometer/Rheometer On a Chip), RheoSense, Inc., San Ramon, California, USA], which consists of measuring the pressure drop when the fluid is injected through a hyperbolic contraction (in which the strain rate is constant at the centerline). A correlation of “screen factor” vs. “extensional viscosity” is obtained. These results give some insight on the behavior of polymer solutions in injectivity conditions along with a method to characterize their elastic properties from bulk measurements. Finally, the inadequacy of traditional small-strain viscoelastic measurements to characterize the elastic behavior of polymer solutions at large strain is discussed.


1999 ◽  
Vol 82 (2-3) ◽  
pp. 233-253 ◽  
Author(s):  
R. Sizaire ◽  
G. Lielens ◽  
I. Jaumain ◽  
R. Keunings ◽  
V. Legat

Sign in / Sign up

Export Citation Format

Share Document