viscosity measurement
Recently Published Documents


TOTAL DOCUMENTS

537
(FIVE YEARS 90)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 2152 (1) ◽  
pp. 012061
Author(s):  
Enjie Dong ◽  
Gan Li ◽  
Xiaogang Hu ◽  
Zhong Li ◽  
Juan Chen ◽  
...  

Abstract The apparent viscosity of semi-solid metallic slurry with a low solid fraction, which is one of the most essential parameters for representing the rheological behavior, is mainly measured by the concentric cylinder rotational approach. The principle of this method is based on the assumptions that the fluid is in an ideal laminar flow state and obey the Newton’s internal friction law. However, as the angular velocity ω increases, the fluid undergoes a transition from a stable laminar flow state to a Taylor vortex and turbulent flow state. These unstable flow conditions such as Taylor vortex and turbulence have a severe impact on the accuracy of apparent viscosity measurement. However, these unstable flow conditions are difficult to monitored and analyzed in real time through experimental methods. Computer numerical simulation technology provides the possibility and convenience for the visualization of the flow state of the semi-solid metallic slurry in the measurement system. In this work, ANSYS Fluent was used to simulate the apparent viscosity measurement process of semi-solid slurry, and the flow state transition process of the semi-solid slurry in the measurement system was successfully visualized and analyzed. In order to avoid the influence of Taylor vortex, combined with the measurement principle of the concentric cylinder rotational rheometer and Taylor’s study on flow stability, the empirical equation of limiting speed to avoid Taylor vortex in the process of Searle rheometer viscosity measurement is given.


Author(s):  
I. Sh. Mingulov ◽  
◽  
M. D. Valeev ◽  
V. V. Mukhametshin ◽  
L. S. Kuleshova ◽  
...  

The article is devoted to the diagnostics of the well pumping equipment operation using wells production viscosity measurement results obtained by the developed field device VNP 1-4, 0-90. The method for making measurements with a field oil viscometer was developed in accordance with the provisions of GOST R 8.563, GOST R ISO 5725-2. It has gained certification and entered the State Register of the Russian Federation. On the basis of preliminary laboratory studies of oils viscosity from the group of fields of LLC UK «Sheshmaoil», a formula was obtained for the dependence of oil emulsions viscosity on temperature and the content of formation water in them. Viscosity measurements obtained with the developed device in field conditions have shown the applicability of the method for calculating the watered oil viscosity.The application of the results of measuring the watered oil viscosity at the wellhead allows diagnosing the downhole sucker rod pump unit operation based on the construction of a dynamic model of its operation. Keywords: equipment diagnostics; water cut; temperature; fluid viscosity; dynamic model; sucker rod pump.


2021 ◽  
Vol 19 (4) ◽  
pp. 619-626
Author(s):  
Sol-Hui Song ◽  
Hoon Kim

Purpose: In this study, we study to more effectively use anesthesia products used in beauty procedures following the popularization of anti-aging. Hydrogel, which contains lidocaine, is believed to be more effective in relieving pain if used in cosmetic procedures with ultrasonic waves.Methods: The availability of manufactured hydrogels and commercial gels for ultrasonic treatment was compared, and the effect on skin penetration and skin penetration due to ultrasonic limitations was evaluated based on their applicability. Usability and optimal ultrasound parameters were identified during ultrasound treatment.Results: Viscosity measurement, gelation rate, swelling, skin permeability experiment, and HPLC analysis of manufactured hydrogels all revealed properties, with skin permeability being highest at frequency 1 MHz, cycle low 200, and high 50.Conclusions: Finally, hydrogels containing lidocaine increased skin permeability during ultrasound treatment, allowing for faster targeted transdermal transmission that was more effective depending on the ultrasound parameters. As a result, it is determined that it can be used in cosmetic procedures.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
K. Ch. Sekhar ◽  
Raviteja Surakasi ◽  
ilhan Garip ◽  
S. Srujana ◽  
V. V. Prasanna Kumar ◽  
...  

A review of multiwalled carbon nanotubes as solar thermic fluids and their thermophysical properties is done in this article. The basic fluids were ethylene glycol and water in ratios of 100 : 0, 90 : 10, and 80 : 20. To investigate how surface modification impacts thermophysical properties, three base fluids were combined with surfactant-assisted MWCNTs and oxidized MWCNTs in weight fractions of 0.125, 0.25, and 0.5 percent, respectively. It takes two months to check whether the dispersion stays constant. Thermal conductivity and viscosity measurement were done using heated discs and Anton Paar viscometers. Using oxidized MWCNTs to disperse, the base fluids increased thermal conductivity by 15% to 24%. Surfactant-assisted MWCNTs in nanofluids perform worse than oxidized MWCNTs. The dynamic viscosity of nanofluids is higher than that of basic fluids between 50 and 70°C. During a mathematical computation, all of the MWCNT weight fractions and ethylene glycol volume percentages are included. The correlation may be a good fit for the experimental data within limits. The characteristics are forecasted using feed-forward backpropagation. In this research, buried layer neurons and factors are examined.


2021 ◽  
Vol 43 ◽  
pp. 33-43
Author(s):  
Gökhan Haydarlar ◽  
Mehmet Alper Sofuoğlu ◽  
Selim Gürgen ◽  
Melih Cemal Kushan ◽  
Mesut Tekkalmaz

This paper presents the feasibility of developing an electromechanical in-situ viscosity measurement technique by analyzing the detectability of small variations in the viscosity of different shear thickening fluids and their different compositions. Shear thickening fluid (STF) is a kind of non-Newtonian fluid showing an increasing viscosity profile under loading. STF is utilized in several applications to take advantage of its tunable rheology. However, process control in different STF applications requires rheological measurements, which cause a costly investment and long-lasting labor. Therefore, one of the most commonly used in-situ structural health monitoring techniques, electromechanical impedance (EMI), was used in this study. In order to actuate the medium electromechanically, a piezoelectric wafer active sensor (PWAS) was used. The variations in the spectral response of PWAS resonator that can be submerged into shear thickening fluid are analyzed by the root mean square deviation, mean absolute percentage deviation and correlation coefficient deviation. According to the results, EMI metrics provide good correlations with the rheological parameters of STF and thereby enabling quick and low-cost rheological control for STF applications such as vibration dampers or stiffness control systems.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiao Xiao ◽  
Jürgen Brillo ◽  
Jonghyun Lee ◽  
Robert W. Hyers ◽  
Douglas M. Matson

AbstractOscillating droplet experiments are conducted using the Electromagnetic Levitation (EML) facility under microgravity conditions. The droplet of molten metal is internally stirred concurrently with the pulse excitation initiating shape oscillations, allowing viscosity measurement of the liquid melts based on the damping rate of the oscillating droplet. We experimentally investigate the impact of convection on the droplet’s damping behavior. The effective viscosity arises and increases as the internal convective flow becomes transitional or turbulent, up to 2–8 times higher than the intrinsic molecular viscosity. The enhanced effective viscosity decays when the stirring has stopped, and an overshoot decay pattern is identified at higher Reynolds numbers, which presents a faster decay rate as the constraint of flow domain size becomes influential. By discriminating the impact of convection on the viscosity results, the intrinsic viscosity can be evaluated with improved measurement accuracy.


Sign in / Sign up

Export Citation Format

Share Document