scholarly journals Epstein–Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection

2019 ◽  
Vol 116 (32) ◽  
pp. 16046-16055 ◽  
Author(s):  
Paulina Mrozek-Gorska ◽  
Alexander Buschle ◽  
Dagmar Pich ◽  
Thomas Schwarzmayr ◽  
Ron Fechtner ◽  
...  

Epstein–Barr virus (EBV) is a human tumor virus and a model of herpesviral latency. The virus efficiently infects resting human B lymphocytes and induces their continuous proliferation in vitro, which mimics certain aspects of EBV’s oncogenic potential in vivo. How lymphoblastoid cell lines (LCLs) evolve from the infected lymphocytes is uncertain. We conducted a systematic time-resolved longitudinal study of cellular functions and transcriptional profiles of newly infected naïve primary B lymphocytes. EBV reprograms the cells comprehensively and globally. Rapid and extensive transcriptional changes occur within 24 h and precede any metabolic and phenotypic changes. Within 72 h, the virus activates the cells, changes their phenotypes with respect to cell size, RNA, and protein content, and induces metabolic pathways to cope with the increased demand for energy, supporting an efficient cell cycle entry on day 3 postinfection. The transcriptional program that EBV initiates consists of 3 waves of clearly discernable clusters of cellular genes that peak on day 2, 3, or 4 and regulate RNA synthesis, metabolic pathways, and cell division, respectively. Upon onset of cell doublings on day 4, the cellular transcriptome appears to be completely reprogrammed to support the proliferating cells, but 3 additional clusters of EBV-regulated genes fine-tune cell signaling, migration, and immune response pathways, eventually. Our study reveals that more than 11,000 genes are regulated upon EBV infection as naïve B cells exit quiescence to enter a germinal center-like differentiation program, which culminates in immortalized, proliferating cells that partially resemble plasmablasts and early plasma cells.

2018 ◽  
Author(s):  
Paulina Mrozek-Gorska ◽  
Alexander Buschle ◽  
Dagmar Pich ◽  
Thomas Schwarzmayr ◽  
Ron Fechtner ◽  
...  

AbstractEpstein-Barr virus (EBV) is a human tumor virus and a model of herpesviral latency. The virus efficiently infects resting human B-lymphocytes and induces their continuous proliferation in vitro, which mimics certain aspects of EBV’s oncogenic potential in vivo. This seminal finding was made 50 years ago, but how EBV activates primary human B-lymphocytes and how lymphoblastoid cell lines (LCLs) evolve from the EBV-infected lymphocytes is uncertain. We conducted a systematic time-resolved longitudinal study of cellular functions and transcriptional profiles of newly infected naïve primary B-lymphocytes. EBV reprograms these human cells comprehensively and globally. Rapid and extensive transcriptional changes occur within 24 hours of infection and precede any metabolic and phenotypic changes. Within the next 48 hours, the virus activates the cells, changes their phenotypes with respect to cell size, RNA and protein content and induces metabolic pathways to cope with the increased demand for energy, supporting an efficient cell cycle entry on day three post infection. The transcriptional program that EBV initiates consists of three waves of clearly discernable clusters of cellular genes that peak on day one, two, or three and regulate RNA synthesis, metabolic pathways and cell division, respectively. Upon the onset of cell doublings on day four the cellular transcriptome appears to be completely reprogrammed to support the activated and proliferating cell, but three additional clusters of EBV regulated genes adjust the infected immune cells to fine-tune cell signaling, migration, and immune response pathways, eventually. Our study reveals that more than 98 % of the 13,000 expressed genes in B-lymphocytes are regulated upon infection demonstrating that EBV governs the entire biology of its target cell.


Blood ◽  
1981 ◽  
Vol 57 (3) ◽  
pp. 510-517 ◽  
Author(s):  
RT Schooley ◽  
BF Haynes ◽  
J Grouse ◽  
C Payling-Wright ◽  
AS Fauci ◽  
...  

Abstract A system of 3H-thymidine incorporation by lymphocytes in culture for 3 wk has been utilized for quantitative assessment of the ability of T lymphocytes to inhibit outgrowth of autologous Epstein-Barr virus (EBV) transformed B lymphocytes. Lymphocytes from EBV-seronegative individuals lack the ability to suppress outgrowth of autologous EBV- transformed B lymphocytes. This capability appears during the course of primary EBV-induced infectious mononucleases (IM) as the atypical lymphocytosis is subsiding and persists for years after recovery from primary EBV infection. The ability of T lymphocytes from EBV- seropositive subjects or convalescent IM patients to inhibit B- lymphocyte outgrowth is not HLA restricted. Thus, T lymphocytes capable of inhibition of in vitro EBV-induced B-cell outgrowth emerge during the acute stage of IM and may represent an important control mechanism of EBV-induced B-lymphocyte proliferation in vivo. The system provides a highly sensitive quantitative means for in vitro assessment of cell- mediated immunity to EBV.


2006 ◽  
Vol 80 (14) ◽  
pp. 6764-6770 ◽  
Author(s):  
Michelle Swanson-Mungerson ◽  
Rebecca Bultema ◽  
Richard Longnecker

ABSTRACT Epstein-Barr virus (EBV) establishes latent infections in a significant percentage of the population. Latent membrane protein 2A (LMP2A) is an EBV protein expressed during latency that inhibits B-cell receptor signaling in lymphoblastoid cell lines. In the present study, we have utilized a transgenic mouse system in which LMP2A is expressed in B cells that are specific for hen egg lysozyme (E/HEL-Tg). To determine if LMP2A allows B cells to respond to antigen, E/HEL-Tg mice were immunized with hen egg lysozyme. E/HEL-Tg mice produced antibody in response to antigen, indicating that LMP2A allows B cells to respond to antigen. In addition, E/HEL-Tg mice produced more antibody and an increased percentage of plasma cells after immunization compared to HEL-Tg littermates, suggesting that LMP2A increased the antibody response in vivo. Finally, in vitro studies determined that LMP2A acts directly on the B cell to increase antibody production by augmenting the expansion and survival of the activated B cells, as well as increasing the percentage of plasma cells generated. Taken together, these data suggest that LMP2A enhances, not diminishes, B-cell-specific antibody responses in vivo and in vitro in the E/HEL-Tg system.


2005 ◽  
Vol 79 (2) ◽  
pp. 1296-1307 ◽  
Author(s):  
Lauri L. Laichalk ◽  
David A. Thorley-Lawson

ABSTRACT In this paper we demonstrate that the cells which initiate replication of Epstein-Barr virus (EBV) in the tonsils of healthy carriers are plasma cells (CD38hi, CD10−, CD19+, CD20lo, surface immunoglobulin negative, and cytoplasmic immunoglobulin positive). We further conclude that differentiation into plasma cells, and not the signals that induce differentiation, initiates viral replication. This was confirmed by in vitro studies showing that the promoter for BZLF1, the gene that begins viral replication, becomes active only after memory cells differentiate into plasma cells and is also active in plasma cell lines. This differs from the reactivation of BZLF1 in vitro, which occurs acutely and is associated with apoptosis and not with differentiation. We suggest that differentiation and acute stress represent two distinct pathways of EBV reactivation in vivo. The fraction of cells replicating the virus decreases as the cells progress through the lytic cycle such that only a tiny fraction actually release infectious virus. This may reflect abortive replication or elimination of cells by the cellular immune response. Consistent with the later conclusion, the cells did not down regulate major histocompatibility complex class I molecules, suggesting that this is not an immune evasion tactic used by EBV and that the cells remain vulnerable to cytotoxic-T-lymphocyte attack.


1999 ◽  
Vol 73 (2) ◽  
pp. 1555-1564 ◽  
Author(s):  
Glenda C. Faulkner ◽  
Scott R. Burrows ◽  
Rajiv Khanna ◽  
Denis J. Moss ◽  
A. Graham Bird ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) infects both B lymphocytes and squamous epithelial cells in vitro, but the cell type(s) required to establish primary and persistent infection in vivo has not been definitively elucidated. The aim of this study was to investigate a group of individuals who lack mature B lymphocytes due to the rare heritable disorder X-linked agammaglobulinemia in order to determine the role of the B cell in the infection process. The results show that none of these individuals harbored EBV in their blood or throat washings. Furthermore, no EBV-specific memory cytotoxic T lymphocytes were found, suggesting that they had not undergone infection in the past. In contrast, 50% of individuals were found to carry human herpesvirus 6, showing that they are infectible by another lymphotropic herpesvirus. These results add weight to the theory that B lymphocytes, and not oropharyngeal epithelial cells, may be required for primary infection with EBV.


Blood ◽  
1981 ◽  
Vol 57 (3) ◽  
pp. 510-517
Author(s):  
RT Schooley ◽  
BF Haynes ◽  
J Grouse ◽  
C Payling-Wright ◽  
AS Fauci ◽  
...  

A system of 3H-thymidine incorporation by lymphocytes in culture for 3 wk has been utilized for quantitative assessment of the ability of T lymphocytes to inhibit outgrowth of autologous Epstein-Barr virus (EBV) transformed B lymphocytes. Lymphocytes from EBV-seronegative individuals lack the ability to suppress outgrowth of autologous EBV- transformed B lymphocytes. This capability appears during the course of primary EBV-induced infectious mononucleases (IM) as the atypical lymphocytosis is subsiding and persists for years after recovery from primary EBV infection. The ability of T lymphocytes from EBV- seropositive subjects or convalescent IM patients to inhibit B- lymphocyte outgrowth is not HLA restricted. Thus, T lymphocytes capable of inhibition of in vitro EBV-induced B-cell outgrowth emerge during the acute stage of IM and may represent an important control mechanism of EBV-induced B-lymphocyte proliferation in vivo. The system provides a highly sensitive quantitative means for in vitro assessment of cell- mediated immunity to EBV.


PEDIATRICS ◽  
1983 ◽  
Vol 71 (6) ◽  
pp. 964-967
Author(s):  
THOMAS J. BOWEN ◽  
RALPH J. WEDGWOOD ◽  
HANS D. OCHS ◽  
WERNER HENLE

In vivo and in vitro humoral and cellular immune responses were studied in a 2½-year-old girl immediately before, during, and after an asymptomatic infection with Epstein-Barr virus. During the acute EBV infection, the patient's peripheral blood mononuclear cells were deficient in immunoglobulin synthesis and suppressed the in vitro immunoglobulin synthesis of normal allogeneic cells. In vitro mitogen transformation of lymphocytes was reduced. In vivo antibody responses to the T cell-dependent antigens bacteriophage φX 174 and Keyhole limpet hemocyanin were markedly depressed. These studies suggest that suppressor cells induced during acute EBV infection not only suppress immunoglobulin synthesis in vitro, but also interfere with in vivo antibody synthesis.


2007 ◽  
Vol 81 (12) ◽  
pp. 6718-6730 ◽  
Author(s):  
Tathagata Choudhuri ◽  
Subhash C. Verma ◽  
Ke Lan ◽  
Masanao Murakami ◽  
Erle S. Robertson

ABSTRACT Epstein-Barr virus (EBV) infects most of the human population and persists in B lymphocytes for the lifetime of the host. The establishment of latent infection by EBV requires the expression of a unique repertoire of genes. The product of one of these viral genes, the EBV nuclear antigen 3C (EBNA3C), is essential for the growth transformation of primary B lymphocytes in vitro and can regulate the transcription of a number of viral and cellular genes important for the immortalization process. This study demonstrates an associated function of EBNA3C which involves the disruption of the G2/M cell cycle checkpoint. We show that EBNA3C-expressing lymphoblastoid cell lines treated with the drug nocodazole, which is known to block cells at the G2/M transition, did not show a G2/M-specific checkpoint arrest. Analyses of the cell cycles of cells expressing EBNA3C demonstrated that the expression of this essential EBV nuclear antigen is capable of releasing the G2/M checkpoint arrest induced by nocodazole. This G2/M arrest in response to nocodazole was also abolished by caffeine, suggesting an involvement of the ATM/ATR signaling pathway in the regulation of this cell cycle checkpoint. Importantly, we show that the direct interaction of EBNA3C with Chk2, the ATM/ATR signaling effector, is responsible for the release of this nocodazole-induced G2/M arrest and that this interaction leads to the serine 216 phosphorylation of Cdc25c, which is sequestered in the cytoplasm by 14-3-3. Overall, our data suggest that EBNA3C can directly regulate the G2/M component of the host cell cycle machinery, allowing for the release of the checkpoint block.


Sign in / Sign up

Export Citation Format

Share Document