scholarly journals Transsynaptic Fish-lips signaling prevents misconnections between nonsynaptic partner olfactory neurons

2019 ◽  
Vol 116 (32) ◽  
pp. 16068-16073 ◽  
Author(s):  
Qijing Xie ◽  
Bing Wu ◽  
Jiefu Li ◽  
Chuanyun Xu ◽  
Hongjie Li ◽  
...  

Our understanding of the mechanisms of neural circuit assembly is far from complete. Identification of wiring molecules with novel mechanisms of action will provide insights into how complex and heterogeneous neural circuits assemble during development. In the Drosophila olfactory system, 50 classes of olfactory receptor neurons (ORNs) make precise synaptic connections with 50 classes of partner projection neurons (PNs). Here, we performed an RNA interference screen for cell surface molecules and identified the leucine-rich repeat–containing transmembrane protein known as Fish-lips (Fili) as a novel wiring molecule in the assembly of the Drosophila olfactory circuit. Fili contributes to the precise axon and dendrite targeting of a small subset of ORN and PN classes, respectively. Cell-type–specific expression and genetic analyses suggest that Fili sends a transsynaptic repulsive signal to neurites of nonpartner classes that prevents their targeting to inappropriate glomeruli in the antennal lobe.

2019 ◽  
Author(s):  
Qijing Xie ◽  
Bing Wu ◽  
Jiefu Li ◽  
Hongjie Li ◽  
David J Luginbuhl ◽  
...  

AbstractOur understanding of the mechanisms of neural circuit assembly is far from complete. Identification of new wiring molecules with novel mechanisms of action will provide new insights into how complex and heterogeneous neural circuits assemble during development. Here, we performed an RNAi screen for cell-surface molecules and identified the leucine-rich-repeat containing transmembrane protein, Fish-lips (Fili), as a novel wiring molecule in the assembly of the Drosophila olfactory circuit. Fili contributes to the precise targeting of both olfactory receptor neuron (ORN) axons as well as projection neuron (PN) dendrites. Cell-type-specific expression and genetic analyses suggest that Fili sends a trans-synaptic repulsive signal to neurites of non-partner classes that prevent their targeting to inappropriate glomeruli in the antennal lobe.Significance StatementIn the fruit fly olfactory system, 50 classes of olfactory receptor neurons (ORNs) make precise synaptic connections with 50 classes of corresponding projection neurons (PNs). Identification of wiring molecules in this circuit can provide insight into understanding neural circuit assembly. This paper reports the role of a transmembrane protein, Fish-lips (Fili), in forming specific connections in this circuit. We found that some ORN axons are repelled by Fili, which is present on dendrites of non-matching PN class, preventing them from targeting inappropriate glomeruli. Similarly, some PN dendrites are repelled by Fili expressed by non-matching ORN class for their correct targeting. Together, these results suggest that Fili mediates repulsion between axons and dendrites of non-synaptic partners to ensure precise wiring patterns.


2020 ◽  
Vol 528 (13) ◽  
pp. 2218-2238 ◽  
Author(s):  
Attilio Iemolo ◽  
Patricia Montilla‐Perez ◽  
I‐Chi Lai ◽  
Yinuo Meng ◽  
Syreeta Nolan ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ami Shah ◽  
Madison Ratkowski ◽  
Alessandro Rosa ◽  
Paul Feinstein ◽  
Thomas Bozza

AbstractOlfactory sensory neurons express a large family of odorant receptors (ORs) and a small family of trace amine-associated receptors (TAARs). While both families are subject to so-called singular expression (expression of one allele of one gene), the mechanisms underlying TAAR gene choice remain obscure. Here, we report the identification of two conserved sequence elements in the mouse TAAR cluster (T-elements) that are required for TAAR gene expression. We observed that cell-type-specific expression of a TAAR-derived transgene required either T-element. Moreover, deleting either element reduced or abolished expression of a subset of TAAR genes, while deleting both elements abolished olfactory expression of all TAARs in cis with the mutation. The T-elements exhibit several features of known OR enhancers but also contain highly conserved, unique sequence motifs. Our data demonstrate that TAAR gene expression requires two cooperative cis-acting enhancers and suggest that ORs and TAARs share similar mechanisms of singular expression.


2021 ◽  
Vol 22 (13) ◽  
pp. 7119
Author(s):  
Golam Rbbani ◽  
Artem Nedoluzhko ◽  
Jorge Galindo-Villegas ◽  
Jorge M. O. Fernandes

Circular RNAs (circRNAs) are an emerging class of regulatory RNAs with a covalently closed-loop structure formed during pre-mRNA splicing. Recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of novel approaches to their identification and functional characterization. CircRNAs are stable, developmentally regulated, and show tissue- and cell-type-specific expression across different taxonomic groups. They play a crucial role in regulating various biological processes at post-transcriptional and translational levels. However, the involvement of circRNAs in fish immunity has only recently been recognized. There is also broad evidence in mammals that the timely expression of circRNAs in muscle plays an essential role in growth regulation but our understanding of their expression and function in teleosts is still very limited. Here, we discuss the available knowledge about circRNAs and their role in growth and immunity in vertebrates from a comparative perspective, with emphasis on cultured teleost fish. We expect that the interest in teleost circRNAs will increase substantially soon, and we propose that they may be used as biomarkers for selective breeding of farmed fish, thus contributing to the sustainability of the aquaculture sector.


2007 ◽  
Vol 353 (4) ◽  
pp. 1017-1022 ◽  
Author(s):  
Johji Nomura ◽  
Akinori Hisatsune ◽  
Takeshi Miyata ◽  
Yoichiro Isohama

EvoDevo ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sonja Fritzsche ◽  
Vera S. Hunnekuhl

Abstract Background The insect neuroendocrine system acts in the regulation of physiology, development and growth. Molecular evolution of this system hence has the potential to allow for major biological differences between insect groups. Two prohormone convertases, PC1/3 and PC2, are found in animals and both function in the processing of neuropeptide precursors in the vertebrate neurosecretory pathway. Whereas PC2-function is conserved between the fly Drosophila and vertebrates, ancestral PC1/3 was lost in the fly lineage and has not been functionally studied in any protostome. Results In order to understand its original functions and the changes accompanying the gene loss in the fly, we investigated PC1/3 and PC2 expression and function in the beetle Tribolium castaneum. We found that PC2 is broadly expressed in the nervous system, whereas surprisingly, PC1/3 expression is restricted to specific cell groups in the posterior brain and suboesophageal ganglion. Both proteases have parallel but non-redundant functions in adult beetles’ viability and fertility. Female infertility following RNAi is caused by a failure to deposit sufficient yolk to the developing oocytes. Larval RNAi against PC2 produced moulting defects where the larvae were not able to shed their old cuticle. This ecdysis phenotype was also observed in a small subset of PC1/3 knockdown larvae and was strongest in a double knockdown. Unexpectedly, most PC1/3-RNAi larvae showed strongly reduced growth, but went through larval moults despite minimal to zero weight gain. Conclusions The cell type-specific expression of PC1/3 and its essential requirement for larval growth highlight the important role of this gene within the insect neuroendocrine system. Genomic conservation in most insect groups suggests that it has a comparable individual function in other insects as well, which has been replaced by alternative mechanisms in flies.


1992 ◽  
Vol 12 (2) ◽  
pp. 552-562
Author(s):  
L Pani ◽  
X B Quian ◽  
D Clevidence ◽  
R H Costa

The transcription factor hepatocyte nuclear factor 3 (HNF-3) is involved in the coordinate expression of several liver genes. HNF-3 DNA binding activity is composed of three different liver proteins which recognize the same DNA site. The HNF-3 proteins (designated alpha, beta, and gamma) possess homology in the DNA binding domain and in several additional regions. To understand the cell-type-specific expression of HNF-3 beta, we have defined the regulatory sequences that elicit hepatoma-specific expression. Promoter activity requires -134 bp of HNF-3 beta proximal sequences and binds four nuclear proteins, including two ubiquitous factors. One of these promoter sites interacts with a novel cell-specific factor, LF-H3 beta, whose binding activity correlates with the HNF-3 beta tissue expression pattern. Furthermore, there is a binding site for the HNF-3 protein within its own promoter, suggesting that an autoactivation mechanism is involved in the establishment of HNF-3 beta expression. We propose that both the LF-H3 beta and HNF-3 sites play an important role in the cell-type-specific expression of the HNF-3 beta transcription factor.


Sign in / Sign up

Export Citation Format

Share Document