scholarly journals The network organization of rat intrathalamic macroconnections and a comparison with other forebrain divisions

2019 ◽  
Vol 116 (27) ◽  
pp. 13661-13669 ◽  
Author(s):  
Larry W. Swanson ◽  
Olaf Sporns ◽  
Joel D. Hahn

The thalamus is 1 of 4 major divisions of the forebrain and is usually subdivided into epithalamus, dorsal thalamus, and ventral thalamus. The 39 gray matter regions comprising the large dorsal thalamus project topographically to the cerebral cortex, whereas the much smaller epithalamus (2 regions) and ventral thalamus (5 regions) characteristically project subcortically. Before analyzing extrinsic inputs and outputs of the thalamus, here, the intrinsic connections among all 46 gray matter regions of the rat thalamus on each side of the brain were expertly collated and subjected to network analysis. Experimental axonal pathway-tracing evidence was found in the neuroanatomical literature for the presence or absence of 99% of 2,070 possible ipsilateral connections and 97% of 2,116 possible contralateral connections; the connection density of ipsilateral connections was 17%, and that of contralateral connections 5%. One hub, the reticular thalamic nucleus (of the ventral thalamus), was found in this network, whereas no high-degree rich club or clear small-world features were detected. The reticular thalamic nucleus was found to be primarily responsible for conferring the property of complete connectedness to the intrathalamic network in the sense that there is, at least, one path of finite length between any 2 regions or nodes in the network. Direct comparison with previous investigations using the same methodology shows that each division of the forebrain (cerebral cortex, cerebral nuclei, thalamus, hypothalamus) has distinct intrinsic network topological organization. A future goal is to analyze the network organization of connections within and among these 4 divisions of the forebrain.

2019 ◽  
Vol 116 (52) ◽  
pp. 26991-27000
Author(s):  
Larry W. Swanson ◽  
Olaf Sporns ◽  
Joel D. Hahn

The endbrain and interbrain form 2 great vertebrate forebrain divisions, and the interbrain is subdivided into the hypothalamus ventrally and thalamus dorsally. General organizing principles of intrainterbrain axonal circuitry were examined here at the level of gray matter regions using network analysis tools in a mammal with the most complete available dataset—before examining interbrain input–output relationships with other nervous system parts. The dataset was curated expertly from the neuroanatomical literature using experimental axonal pathway-tracing methods, and evidence from 74,242 connection reports indicates the existence of 10,836 macroconnections of the possible 49,062 macroconnections between the 222 gray matter regions forming the right and left halves of the interbrain. Two identical sets of 6 putative hubs were identified in the intrainterbrain network and form a continuous tissue mass in a part of the right and left medial hypothalamus associated functionally with physiological mechanisms controlling bodily functions. The intrainterbrain network shows only weak evidence of small-world attributes, rich club organization is absent, and multiresolution consensus cluster analysis indicates a solution with only 3 top-level subsystems or modules. In contrast, a previous analysis employing the same methodology to the significantly denser 244-node intraendbrain network revealed 2 identical sets of 13 hubs, small-world and rich club attributes, and 4 top-level subsystems. These differences in intrinsic network architecture across subdivisions suggest that intrinsic connections shape regional functional specialization to a varying extent, in part driven by differences in density and centrality, with extrinsic input–output connectivity playing a greater role in subdivisions that are sparser and less centralized.


2010 ◽  
Vol 46 (4) ◽  
pp. 259-264 ◽  
Author(s):  
Marc Kent ◽  
Kate E. Creevy ◽  
Alexander deLahunta

Three adult Chihuahuas were presented for evaluation after smoke inhalation during a house fire. All three dogs received supportive care and supplemental oxygen. After initial improvement, the dogs developed seizures. Despite anticonvulsant therapy and supportive care, the dogs died. The brains of two dogs were examined. Lesions were identified that were compatible with acute carbon monoxide (CO) toxicity. Lesions were confined to the caudate nucleus, the globus pallidus, and the substantia nigra bilaterally, as well as the cerebellum, cerebral cortex, and dorsal thalamus. This case report describes the clinicopathological sequelae in acute CO toxicity.


1991 ◽  
Vol 6 (3) ◽  
pp. 233-233
Author(s):  
L. R. Waid ◽  
C. R. Bene ◽  
D. L. Bachman ◽  
W. C. Carson

2021 ◽  
pp. 175-178
Author(s):  
Richard J. Caselli ◽  
David T. Jones

The cerebral cortex is involved in various simple and complex activities. It consists of layers of neuronal cell bodies (ie, gray matter) that are organized into gyri (convolutions).The cortex can be divided into functional components in several ways. Various schemes are based on function, cytoarchitecture, topography, or Brodmann areas. The terminology can be confusing because the same area of cortex could be designated by several names. For instance, Brodmann area 17 is also called the primary visual cortex, the striate cortex, and the calcarine cortex. Brodmann designated 52 regions of the cerebral cortex according to cytoarchitecture.


2012 ◽  
Vol 29 ◽  
pp. 107-108
Author(s):  
C. Mattusch ◽  
S. Kratzer ◽  
R. Hasender ◽  
E. F. Kochs ◽  
M. Eder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document