scholarly journals Nanoscale coupling of junctophilin-2 and ryanodine receptors regulates vascular smooth muscle cell contractility

2019 ◽  
Vol 116 (43) ◽  
pp. 21874-21881 ◽  
Author(s):  
Harry A. T. Pritchard ◽  
Caoimhin S. Griffin ◽  
Evan Yamasaki ◽  
Pratish Thakore ◽  
Conor Lane ◽  
...  

Junctophilin proteins maintain close contacts between the endoplasmic/sarcoplasmic reticulum (ER/SR) and the plasma membrane in many types of cells, as typified by junctophilin-2 (JPH2), which is necessary for the formation of the cardiac dyad. Here, we report that JPH2 is the most abundant junctophilin isotype in native smooth muscle cells (SMCs) isolated from cerebral arteries and that acute knockdown diminishes the area of sites of interaction between the SR and plasma membrane. Superresolution microscopy revealed nanometer-scale colocalization of JPH2 clusters with type 2 ryanodine receptor (RyR2) clusters near the cell surface. Knockdown of JPH2 had no effect on the frequency, amplitude, or kinetics of spontaneous Ca2+ sparks generated by transient release of Ca2+ from the SR through RyR2s, but it did nearly abolish Ca2+ spark-activated, large-conductance, Ca2+-activated K+ (BK) channel currents. We also found that JPH2 knockdown was associated with hypercontractility of intact cerebral arteries. We conclude that JPH2 maintains functional coupling between RyR2s and BK channels and is critically important for cerebral arterial function.

2014 ◽  
Vol 306 (7) ◽  
pp. H981-H988 ◽  
Author(s):  
Gayathri Krishnamoorthy ◽  
Swapnil K. Sonkusare ◽  
Thomas J. Heppner ◽  
Mark T. Nelson

In depolarized smooth muscle cells of pressurized cerebral arteries, ryanodine receptors (RyRs) generate “Ca2+ sparks” that activate large-conductance, Ca2+-, and voltage-sensitive potassium (BK) channels to oppose pressure-induced (myogenic) constriction. Here, we show that BK channels and RyRs have opposing roles in the regulation of arterial tone in response to sympathetic nerve activation by electrical field stimulation. Inhibition of BK channels with paxilline increased both myogenic and nerve-induced constrictions of pressurized, resistance-sized mesenteric arteries from mice. Inhibition of RyRs with ryanodine increased myogenic constriction, but it decreased nerve-evoked constriction along with a reduction in the amplitude of nerve-evoked increases in global intracellular Ca2+. In the presence of L-type voltage-dependent Ca2+ channel (VDCC) antagonists, nerve stimulation failed to evoke a change in arterial diameter, and BK channel and RyR inhibitors were without effect, suggesting that nerve- induced constriction is dependent on activation of VDCCs. Collectively, these results indicate that BK channels and RyRs have different roles in the regulation of myogenic versus neurogenic tone: whereas BK channels and RyRs act in concert to oppose myogenic vasoconstriction, BK channels oppose neurogenic vasoconstriction and RyRs augment it. A scheme for neurogenic vasoregulation is proposed in which RyRs act in conjunction with VDCCs to regulate nerve-evoked constriction in mesenteric resistance arteries.


2001 ◽  
Vol 281 (6) ◽  
pp. C1769-C1775 ◽  
Author(s):  
Guillermo J. Pérez ◽  
Adrian D. Bonev ◽  
Mark T. Nelson

The goal of the present study was to test the hypothesis that local Ca2+ release events (Ca2+ sparks) deliver high local Ca2+concentration to activate nearby Ca2+-sensitive K+ (BK) channels in the cell membrane of arterial smooth muscle cells. Ca2+ sparks and BK channels were examined in isolated myocytes from rat cerebral arteries with laser scanning confocal microscopy and patch-clamp techniques. BK channels had an apparent dissociation constant for Ca2+ of 19 μM and a Hill coefficient of 2.9 at −40 mV. At near-physiological intracellular Ca2+ concentration ([Ca2+]i; 100 nM) and membrane potential (−40 mV), the open probability of a single BK channel was low (1.2 × 10−6). A Ca2+spark increased BK channel activity to 18. Assuming that 1–100% of the BK channels are activated by a single Ca2+ spark, BK channel activity increases 6 × 105-fold to 6 × 103-fold, which corresponds to ∼30 μM to 4 μM spark Ca2+ concentration. 1,2-bis(2-aminophenoxy)ethane- N,N,N′,N′-tetraacetic acid acetoxymethyl ester caused the disappearance of all Ca2+sparks while leaving the transient BK currents unchanged. Our results support the idea that Ca2+ spark sites are in close proximity to the BK channels and that local [Ca2+]i reaches micromolar levels to activate BK channels.


1999 ◽  
Vol 113 (2) ◽  
pp. 229-238 ◽  
Author(s):  
Guillermo J. Pérez ◽  
Adrian D. Bonev ◽  
Joseph B. Patlak ◽  
Mark T. Nelson

The relationship between Ca2+ release (“Ca2+ sparks”) through ryanodine-sensitive Ca2+ release channels in the sarcoplasmic reticulum and KCa channels was examined in smooth muscle cells from rat cerebral arteries. Whole cell potassium currents at physiological membrane potentials (−40 mV) and intracellular Ca2+ were measured simultaneously, using the perforated patch clamp technique and a laser two-dimensional (x–y) scanning confocal microscope and the fluorescent Ca2+ indicator, fluo-3. Virtually all (96%) detectable Ca2+ sparks were associated with the activation of a spontaneous transient outward current (STOC) through KCa channels. A small number of sparks (5 of 128) were associated with currents smaller than 6 pA (mean amplitude, 4.7 pA, at −40 mV). Approximately 41% of STOCs occurred without a detectable Ca2+ spark. The amplitudes of the Ca2+ sparks correlated with the amplitudes of the STOCs (regression coefficient 0.8; P < 0.05). The half time of decay of Ca2+ sparks (56 ms) was longer than the associated STOCs (9 ms). The mean amplitude of the STOCs, which were associated with Ca2+ sparks, was 33 pA at −40 mV. The mean amplitude of the “sparkless” STOCs was smaller, 16 pA. The very significant increase in KCa channel open probability (>104-fold) during a Ca2+ spark is consistent with local Ca2+ during a spark being in the order of 1–100 μM. Therefore, the increase in fractional fluorescence (F/Fo) measured during a Ca2+ spark (mean 2.04 F/Fo or ∼310 nM Ca2+) appears to significantly underestimate the local Ca2+ that activates KCa channels. These results indicate that the majority of ryanodine receptors that cause Ca2+ sparks are functionally coupled to KCa channels in the surface membrane, providing direct support for the idea that Ca2+ sparks cause STOCs.


2015 ◽  
Vol 146 (1) ◽  
pp. 79-96 ◽  
Author(s):  
Arthur Karlin

Arterial smooth muscle (SM) cells respond autonomously to changes in intravascular pressure, adjusting tension to maintain vessel diameter. The values of membrane potential (Vm) and sarcoplasmic Ca2+ concentration (Cain) within minutes of a change in pressure are the results of two opposing pathways, both of which use Ca2+ as a signal. This works because the two Ca2+-signaling pathways are confined to distinct microdomains in which the Ca2+ concentrations needed to activate key channels are transiently higher than Cain. A mathematical model of an isolated arterial SM cell is presented that incorporates the two types of microdomains. The first type consists of junctions between cisternae of the peripheral sarcoplasmic reticulum (SR), containing ryanodine receptors (RyRs), and the sarcolemma, containing voltage- and Ca2+-activated K+ (BK) channels. These junctional microdomains promote hyperpolarization, reduced Cain, and relaxation. The second type is postulated to form around stretch-activated nonspecific cation channels and neighboring Ca2+-activated Cl− channels, and promotes the opposite (depolarization, increased Cain, and contraction). The model includes three additional compartments: the sarcoplasm, the central SR lumen, and the peripheral SR lumen. It incorporates 37 protein components. In addition to pressure, the model accommodates inputs of α- and β-adrenergic agonists, ATP, 11,12-epoxyeicosatrienoic acid, and nitric oxide (NO). The parameters of the equations were adjusted to obtain a close fit to reported Vm and Cain as functions of pressure, which have been determined in cerebral arteries. The simulations were insensitive to ±10% changes in most of the parameters. The model also simulated the effects of inhibiting RyR, BK, or voltage-activated Ca2+ channels on Vm and Cain. Deletion of BK β1 subunits is known to increase arterial–SM tension. In the model, deletion of β1 raised Cain at all pressures, and these increases were reversed by NO.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Anna Bukiya ◽  
Ligia Toro ◽  
Alejandro M Dopico

The activity of large conductance, Ca 2+ - and voltage-gated potassium (BK) channels in smooth muscle critically controls vascular tone. Depolarization-induced Ca 2+ -entry in the myocyte activates BK channels, which generate outward positive current that tends to repolarize the membrane, limit Ca 2+ entry and, thus, oppose contraction. Cholane-derived steroids (e.g., lithocholic acid, LC) reduce vascular tone in isolated, resistance-size rat cerebral arteries by selective activation of myocyte BK channels. In most tissues, native BK channels consist of pore-forming α (encoded by KCNMA1 or Slo1 ) and accessory β1–4 (encoded by KCNMB1–4 ) subunits. Remarkably, KCNMB expression is tissue-specific: while KCNMB1 is highly predominant in smooth muscle, KCNMB2–4 are not. Thus, agents that target BK β1 subunits may be used to selectively modulate myocyte BK channel function. After cloning the BK α subunit from rat cerebral artery myocytes (termed “cbv1”, AY330293 ), we demonstrated that homomeric cbv1 channel steady-state activity (NPo) was not affected by acute LC application. In contrast, heteromeric cbv1+β1 channel NPo was reversibly increased by LC (+290% of control at EC max ~150 μM; EC 50 =46 μM). Whether the other BK β subunits (2–4) can substitute for β1 to evoke LC-sensitivity in the BK channel remains unknown. To test this, we applied 150 μM LC to the intracellular side of inside-out patches excised from Xenopus laevis oocytes expressing cbv1 alone or cbv1 with a given BK β subunit subtype (1–4). Currents were evoked with the membrane clamped at ±20mV and free Ca 2+ i set to 10 μM, a concentration found in the cerebral artery myocyte during contraction. As previously found, LC consistently failed to increase homomeric cbv1 NPo, while drastically enhancing heteromeric cbv1+β1 channel NPo. Remarkably, LC failed to activate cbv1+β2, cbv1+β3 and cbv1+β4 heteromeric channels. In conclusion, the BK β1 (smooth muscle-type) subunit serves as a unique sensor for cholane-derived steroids. Thus, these compounds provide a platform for designing therapeutic agents to treat cardiovascular disease where reduction of vascular tone is required.


2007 ◽  
Vol 28 (2) ◽  
pp. 377-386 ◽  
Author(s):  
Ling Dong ◽  
Yun-Min Zheng ◽  
Dee Van Riper ◽  
Rakesh Rathore ◽  
Qing-Hua Liu ◽  
...  

Cerebral vascular dysfunction and associated diseases often occur in type-1 diabetes, but the underlying mechanisms are largely unknown. In this study, we sought to determine whether big-conductance, Ca2+-activated K+ (BK) channels were impaired in vascular (cerebral artery) smooth muscle cells (CASMCs) from streptozotocin-induced type-1 diabetic mice using patch clamp, molecular biologic, and genetic approaches. Our data indicate that the frequency and amplitude of spontaneous transient outward currents (STOCs) are significantly decreased, whereas the activity of spontaneous Ca2+ sparks is increased, in diabetic CASMCs. The sensitivity of BK channels to voltage, Ca2+, and the specific inhibitor iberiotoxin are all reduced in diabetic myocytes. Diabetic mice show increased myogenic tone and decreased contraction in response to iberiotoxin in cerebral arteries and elevated blood pressure. The expression of the BK channel β1, but not α-subunit protein, is markedly decreased in diabetic cerebral arteries. Diabetic impairment of BK channel activity is lost in CASMCs from BK channel β1-subunit gene deletion mice. In conclusion, the BK channel β1-subunit is impaired in type-1 diabetic vascular SMCs, resulting in increased vasoconstriction and elevated blood pressure, thereby contributing to vascular diseases in type-1 diabetes.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jun Huang ◽  
Li-Qun Ma ◽  
Yongle Yang ◽  
Nana Wen ◽  
Wan Zhou ◽  
...  

Artemisia annuaL. belongs to the Asteraceae family, which is indigenous to China. It has valuable pharmacological properties, such as antimalarial, anti-inflammatory, and anticancer properties. However, whether it possesses antiasthma properties is unknown. In the current study, chloroform extract ofArtemisia annuaL. (CEAA) was prepared, and we found that CEAA completely eliminated acetylcholine (ACh) or high K+-elicited (80 mM) contractions of mouse tracheal rings (TRs). Patch-clamp technique and ion channel blockers were employed to explore the underlying mechanisms of the relaxant effect of CEAA. In whole-cell current recording, CEAA almost fully abolished voltage-dependent Ca2+channel (VDCC) currents and markedly enhanced large conductance Ca2+-activated K+(BK) channel currents on airway smooth muscle cells (ASMCs). In single channel current recording, CEAA increased the opening probability but had no effect on the single channel conductance of BK channels. However, under paxilline-preincubated (a selective BK channel blocker) conditions, CEAA only slightly increased BK channel currents. These results indicate that CEAA may contain active components with potent antiasthma activity. The abolished VDCCs by CEAA may mainly contribute to the underlying mechanism through which it acts as an effective antiasthmatic compound, but the enhanced BK currents might play a less important role in the antiasthmatic effects.


2015 ◽  
Vol 309 (6) ◽  
pp. C392-C402 ◽  
Author(s):  
M. Dennis Leo ◽  
Simon Bulley ◽  
John P. Bannister ◽  
Korah P. Kuruvilla ◽  
Damodaran Narayanan ◽  
...  

Arterial smooth muscle cells (myocytes) express large-conductance Ca2+-activated K+ (BK) channel α and auxiliary β1 subunits that modulate arterial contractility. In arterial myocytes, β1 subunits are stored within highly mobile rab11A-positive recycling endosomes. In contrast, BKα subunits are primarily plasma membrane-localized. Trafficking pathways for BKα and whether physiological stimuli that regulate arterial contractility alter BKα localization in arterial myocytes are unclear. Here, using biotinylation, immunofluorescence resonance energy transfer (immunoFRET) microscopy, and RNAi-mediated knockdown, we demonstrate that rab4A-positive early endosomes traffic BKα to the plasma membrane in myocytes of resistance-size cerebral arteries. Angiotensin II (ANG II), a vasoconstrictor, reduced both surface and total BKα, an effect blocked by bisindolylmaleimide-II, concanavalin A, and dynasore, protein kinase C (PKC), internalization, and endocytosis inhibitors, respectively. In contrast, ANG II did not reduce BKα mRNA, and sodium nitroprusside, a nitric oxide donor, did not alter surface BKα protein over the same time course. MG132 and bafilomycin A, proteasomal and lysosomal inhibitors, respectively, also inhibited the ANG II-induced reduction in surface and total BKα, resulting in intracellular BKα accumulation. ANG II-mediated BK channel degradation reduced BK currents in isolated myocytes and functional responses to iberiotoxin, a BK channel blocker, and NS1619, a BK activator, in pressurized (60 mmHg) cerebral arteries. These data indicate that rab4A-positive early endosomes traffic BKα to the plasma membrane in arterial myocytes. We also show that ANG II stimulates PKC-dependent BKα internalization and degradation. These data describe a unique mechanism by which ANG II inhibits arterial myocyte BK currents, by reducing surface channel number, to induce vasoconstriction.


2005 ◽  
Vol 288 (6) ◽  
pp. C1255-C1263 ◽  
Author(s):  
Georgi V. Petkov ◽  
Mark T. Nelson

Stimulation of β-adrenoceptors contributes to the relaxation of urinary bladder smooth muscle (UBSM) through activation of large-conductance Ca2+-activated K+ (BK) channels. We examined the mechanisms by which β-adrenoceptor stimulation leads to an elevation of the activity of BK channels in UBSM. Depolarization from −70 to +10 mV evokes an inward L-type dihydropyridine-sensitive voltage-dependent Ca2+ channel (VDCC) current, followed by outward steady-state and transient BK current. In the presence of ryanodine, which blocks the transient BK currents, isoproterenol, a nonselective β-adrenoceptor agonist, increased the VDCC current by ∼25% and the steady-state BK current by ∼30%. In the presence of the BK channel inhibitor iberiotoxin, isoproterenol did not cause activation of the remaining steady-state K+ current component. Decreasing Ca2+ influx through VDCC by nifedipine or depolarization to +80 mV suppressed the isoproterenol-induced activation of the steady-state BK current. Unlike forskolin, isoproterenol did not change significantly the open probability of single BK channels in the absence of Ca2+ sparks and with VDCC inhibited by nifedipine. Isoproterenol elevated Ca2+ spark (local intracellular Ca2+ release through ryanodine receptors of the sarcoplasmic reticulum) frequency and associated transient BK currents by ∼1.4-fold. The data support the concept that in UBSM β-adrenoceptor stimulation activates BK channels by elevating Ca2+ influx through VDCC and by increasing Ca2+ sparks, but not through a Ca2+-independent mechanism. This study reveals key regulatory molecular and cellular mechanisms of β-adrenergic regulation of BK channels in UBSM that could provide new targets for drugs in the treatment of bladder dysfunction.


Sign in / Sign up

Export Citation Format

Share Document