scholarly journals Coordination amongst quadriceps muscles suggests neural regulation of internal joint stresses, not simplification of task performance

2020 ◽  
Vol 117 (14) ◽  
pp. 8135-8142 ◽  
Author(s):  
Cristiano Alessandro ◽  
Filipe O. Barroso ◽  
Adarsh Prashara ◽  
David P. Tentler ◽  
Hsin-Yun Yeh ◽  
...  

Many studies have demonstrated covariation between muscle activations during behavior, suggesting that muscles are not controlled independently. According to one common proposal, this covariation reflects simplification of task performance by the nervous system so that muscles with similar contributions to task variables are controlled together. Alternatively, this covariation might reflect regulation of low-level aspects of movements that are common across tasks, such as stresses within joints. We examined these issues by analyzing covariation patterns in quadriceps muscle activity during locomotion in rats. The three monoarticular quadriceps muscles (vastus medialis [VM], vastus lateralis [VL], and vastus intermedius [VI]) produce knee extension and so have identical contributions to task performance; the biarticular rectus femoris (RF) produces an additional hip flexion. Consistent with the proposal that muscle covariation is related to similarity of muscle actions on task variables, we found that the covariation between VM and VL was stronger than their covariations with RF. However, covariation between VM and VL was also stronger than their covariations with VI. Since all vastii have identical actions on task variables, this finding suggests that covariation between muscle activity is not solely driven by simplification of overt task performance. Instead, the preferentially strong covariation between VM and VL is consistent with the control of internal joint stresses: Since VM and VL produce opposing mediolateral forces on the patella, the high positive correlation between their activation minimizes the net mediolateral patellar force. These results provide important insights into the interpretation of muscle covariations and their role in movement control.

2019 ◽  
Author(s):  
Cristiano Alessandro ◽  
Adarsh Prashara ◽  
David P. Tentler ◽  
Hsin-Yun Yeh ◽  
Filipe O. Barroso ◽  
...  

SummaryMany studies have demonstrated co-variation between muscle activations during behavior, suggesting that muscles are not controlled independently. According to one common proposal, this co-variation reflects simplification of task performance by the nervous system, so that muscles with similar contributions to task variables are controlled together. Alternatively, this co-variation might reflect regulation of low-level aspects of movements that are common across tasks, such as stresses within joints. We examined these issues by analyzing co-variation patterns in quadriceps muscle activity during locomotion in rats. The three mono-articular quadriceps muscles (vastus medialis, VM; vastus lateralis, VL; vastus intermedius, VI) produce knee extension and so have identical contributions to task performance; the bi-articular rectus femoris (RF) produces an additional hip flexion. Consistent with the proposal that muscle co-variation is related to similarity of muscle actions on task variables, we found that the co-variation between VM and VL was stronger than their co-variations with RF. However, co-variation between VM and VL was also stronger than their co-variations with VI. Since all vastii have identical actions on task variables, this finding suggests that co-variation between muscle activity is not solely driven by simplification of task performance. Instead, the preferentially strong co-variation between VM and VL is consistent with the control of internal joint stresses: since VM and VL produce opposing mediolateral forces on the patella, the high positive correlation between their activation minimizes the net mediolateral patellar force. These results provide important insights into the interpretation of muscle co-variations and their role in movement control.


2002 ◽  
Vol 93 (2) ◽  
pp. 675-684 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara ◽  
Kei Masani ◽  
Hiroaki Kanehisa ◽  
Tetsuo Fukunaga

To determine quantitatively the features of alternate muscle activity between knee extensor synergists during low-level prolonged contraction, a surface electromyogram (EMG) was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) in 11 subjects during isometric knee extension exercise at 2.5% of maximal voluntary contraction (MVC) for 60 min ( experiment 1). Furthermore, to examine the relation between alternate muscle activity and contraction levels, six of the subjects also performed sustained knee extension at 5.0, 7.5, and 10.0% of MVC ( experiment 2). Alternate muscle activity among the three muscles was assessed by quantitative analysis on the basis of the rate of integrated EMG sequences. In experiment 1, the number of alternations was significantly higher between RF and either VL or VM than between VL and VM. Moreover, the frequency of alternate muscle activity increased with time. In experiment 2, alternating muscle activity was found during contractions at 2.5 and 5.0% of MVC, although not at 7.5 and 10.0% of MVC, and the number of alternations was higher at 2.5 than at 5.0% of MVC. Thus the findings of the present study demonstrated that alternate muscle activity in the quadriceps muscle 1) appears only between biarticular RF muscle and monoarticular vasti muscles (VL and VM), and its frequency of alternations progressively increases with time, and 2) emerges under sustained contraction with force production levels ≤5.0% of MVC.


2020 ◽  
Vol 41 (13) ◽  
pp. 929-935
Author(s):  
Denis César Leite Vieira ◽  
Marco Aurélio Araujo Dourado ◽  
Lucas Ugliara ◽  
Joao Luiz Quagliotti Durigan ◽  
Brad J. Schoenfeld ◽  
...  

AbstractThis study investigated the acute effects of seated and supine knee extension exercise on muscle swelling, torque, and work output. Twelve resistance-trained men performed two isokinetic concentric-only knee-extension training protocols at different hip positions in a counter-balanced order. They completed the knee extension exercise in the seated (hip angle at 85°) and supine (hip angle at 180°) positions. The torque and work output were assessed during each set. Moreover, muscle thickness of the middle and proximal vastus lateralis and rectus femoris were evaluated before and after each protocol and used as an indicator of muscle swelling. Middle rectus femoris and proximal vastus lateralis thickness increased significantly (p=0.01) with no difference between exercise variations. However, the middle vastus lateralis thickness increased (p=0.01) only after the seated knee extension exercise (~7%). Knee extensors’ peak torque and work output were approximately 8% higher (p=0.04) in the seated when compared to the supine hip position. There was a similar decrease in torque and work output throughout both protocols (p=0.98). In conclusion, seated knee extension exercises produced greater torque, work output, and muscle swelling in the vastus lateralis when compared to the supine knee extension exercise.


2006 ◽  
Vol 101 (3) ◽  
pp. 715-720 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara

Alternate muscle activity between synergist muscles has been demonstrated during low-level sustained contractions [≤5% of maximal voluntary contraction (MVC) force]. To determine the functional significance of the alternate muscle activity, the association between the frequency of alternate muscle activity during a low-level sustained knee extension and the reduction in knee extension MVC force was studied. Forty-one healthy subjects performed a sustained knee extension at 2.5% MVC force for 1 h. Before and after the sustained knee extension, MVC force was measured. The surface electromyogram was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles. The frequency of alternate muscle activity for RF-VL, RF-VM, and VL-VM pairs was determined during the sustained contraction. The frequency of alternate muscle activity ranged from 4 to 11 times/h for RF-VL (7.0 ± 2.0 times/h) and RF-VM (7.0 ± 1.9 times/h) pairs, but it was only 0 to 2 times/h for the VL-VM pair (0.5 ± 0.7 times/h). MVC force after the sustained contraction decreased by 14% ( P < 0.01) from 573.6 ± 145.2 N to 483.3 ± 130.5 N. The amount of reduction in MVC force was negatively correlated with the frequency of alternate muscle activity for the RF-VL and RF-VM pairs ( P < 0.001 and r = 0.65 for both) but not for the VL-VM pair. The results demonstrate that subjects with more frequent alternate muscle activity experience less muscle fatigue. We conclude that the alternate muscle activity between synergist muscles attenuates muscle fatigue.


2014 ◽  
Vol 9 (1) ◽  
pp. 20 ◽  
Author(s):  
António M. VencesBrito ◽  
Marco A. Colaço Branco ◽  
Renato M. Cordeiro Fernandes ◽  
Mário A. Rodrigues Ferreira ◽  
Orlando J. S. M. Fernandes ◽  
...  

Presently, coaches and researchers need to have a better comprehension of the kinesiological parameters that should be an important tool to support teaching methodologies and to improve skills performance in sports. The aim of this study was to (i) identify the kinematic and neuromuscular control patterns of the front kick (<em>mae-geri</em>) to a fixed target performed by 14 experienced karate practitioners, and (ii) compare it with the execution of 16 participants without any karate experience, allowing the use of those references in the analysis of the training and learning process. Results showed that the kinematic and neuromuscular activity during the kick performance occurs within 600 ms. Muscle activity and kinematic analysis demonstrated a sequence of activation bracing a proximal-to-distal direction, with the muscles presenting two distinct periods of activity (1, 2), where the karateka group has a greater intensity of activation – root mean square (RMS) and electromyography (EMG) peak – in the first period on <em>Rectus Femoris</em> (RF1) and  <em>Vastus Lateralis</em> (VL1) and a lower duration of co-contraction in both periods on <em>Rectus Femoris</em>-<em>Biceps Femoris</em> and <em>Vastus Lateralis</em>-<em>Biceps Femoris</em> (RF-BF; VL-BF). In the skill performance, the hip flexion, the knee extension and the ankle plantar flexion movements were executed with smaller difference in the range of action (ROA) in the karateka group, reflecting different positions of the segments. In conclusion, it was observed a general kinesiological pattern, which was similar in karateka and non-karateka practitioners. However, in the karateka group, the training induces a specialization in the muscle activity reflected in EMG and kinematic data, which leads to a better ballistic performance in the execution of the <em>mae-geri</em> kick, associated with a maximum speed of the distal segments, reached closer to the impact moment, possibly representing more power in the contact.


2020 ◽  
Vol 37 (5) ◽  
pp. 291-297
Author(s):  
G Freire da Silva ◽  
F Douglas Tourino ◽  
RC Ribeiro Diniz ◽  
L Túlio de Lacerda ◽  
HC Martins Costa ◽  
...  

Aim: The objective of the present study was to compare the amplitude of the electromyographic (EMG) signal of the quadriceps muscle portions vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) and the activation ratio (VM/VL, VM/RF and VL/RF) in protocols with different durations of concentric and eccentric muscular actions. Material and method: Twelve female volunteers performed the knee extensor exercise with two different protocols [1s for concentric muscle action and 5s for eccentric muscle action (1:5); 5s of concentric muscle action and 1s of eccentric muscle action (5:1)] and 3 sets of 6 repetitions, 180s of pause between each sets and a intensity of 50% of 1RM. The root mean square of the amplitude of the normalized EMG signal was calculated for each repetition in each series. Results: it was observed an increase in the activation of the VM and VL portions in equivalent repetitions of each series and for the VL portion, the 1: 5 protocol provided greater activation compared to the other protocol. No differences were found for muscles activation ratios VM/RF and VL/RF, being that for the VM/VL ratio there was only change at one repetition. Conclusion: The results suggest that the portions of the quadriceps muscle may present different EMG responses in similar protocols, but this fact may not interfere in the synergism between them. The reduced degrees of freedom of the knee extension exercise and the characteristics of the protocols adopted may be the elements that contributed to the limited alterations that occurred in the present study.


2013 ◽  
Vol 39 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Mohammadtaghi Amiri-Khorasani ◽  
Eleftherios Kellis

Abstract The purpose of this study was to compare the effects of static and dynamic stretching on quadriceps muscle activation during maximal soccer instep kicking. The kicking motion of twelve male college soccer players (body height: 174.66 ± 5.01 cm; body mass: 72.83 ± 4.83 kg; age: 18.83 ± 0.75 years) was captured using six synchronized high-speed infra-red cameras whilst electromyography (EMG) signals from vastus medialis (VM), lateralis (VL) and rectus femoris (RF) were recorded before and after static or dynamic stretching. Analysis of variance designs showed a higher increase in knee extension angular velocity (9.65% vs. -1.45%, p < 0.001), RF (37.5% vs. -8.33%, p < 0.001), VM (12% vs. - 12%, p < 0.018), and VL EMG activity (20% vs. -6.67%, p < 0.001) after dynamic stretching exercises. Based on these results, it could be suggested that dynamic stretching is probably more effective in increasing quadriceps muscle activity and knee extension angular velocity during the final swing phase of a maximal soccer instep kick than static stretching.


2014 ◽  
Vol 117 (10) ◽  
pp. 1132-1140 ◽  
Author(s):  
François Hug ◽  
Paul W. Hodges ◽  
Wolbert van den Hoorn ◽  
Kylie Tucker

This study aimed to determine whether muscle stress (force per unit area) can be redistributed between individual heads of the quadriceps muscle when pain is induced into one of these heads. Elastography was used to measure muscle shear elastic modulus (an index of muscle stress). Electromyography (EMG) was recorded from vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF). In experiment I ( n = 20), participants matched a knee extension force, and thus any reduction of stress within the painful muscle would require compensation by other muscles. In experiment II ( n = 13), participants matched VL EMG amplitude and were free to vary external force such that intermuscle compensation would be unnecessary to maintain the experimental task. In experiments I and II, pain was induced by injection of hypertonic saline into VM or RF. Experiment III aimed to establish whether voluntary drive to the individual muscles could be controlled independently. Participants ( n = 13) were asked to voluntarily reduce activation of VM or RF while maintaining knee extension force. During VM pain, there was no change in shear elastic modulus ( experiments I and II) or EMG amplitude of VM ( experiment II). In contrast, RF pain was associated with a reduction in RF elastic modulus ( experiments I and II: −8 to −17%) and EMG amplitude ( experiment II). Participants could voluntarily reduce EMG amplitude of RF ( −26%; P = 0.003 ) but not VM ( experiment III). These results highlight between-muscle differences in adaptation to pain that might be explained by their function (monoarticular vs. biarticular) and/or the neurophysiological constraints associated to their activation.


2021 ◽  
Vol 30 (3) ◽  
pp. 387-395
Author(s):  
Soojin Kim ◽  
Joo-Hyun Lee ◽  
Jihye Heo ◽  
Eunwook Chang

PURPOSE: The purpose of this study was to compare thigh muscle activities and muscle co-activation when performing squats, wall squats, and Spanish squats on stable and unstable ground.METHODS: Twenty-two healthy male subjects (age: 22.50±2.70 years, height: 178.72±6.04 cm, mass: 76.50±6.80 kg, body mass index: 24.00±2.10 kg/m2, and Godin activity questionnaire: 56.30±24.10) voluntarily participated in the study. All of the participants performed three different squat exercises on the floor and the BOSU ball with an electromyograph attached to each participant’s quadriceps (rectus femoris, RF; vastus lateralis, VL; and vastus medialis, VM) and hamstrings (biceps femoris, BF; semitendinosus, ST; and semimembranosus, SM). Repeated measures of analysis of variance were utilized to compare muscle activity during the three squats exercises by floor type.RESULTS: RF (p<.001, η2=.689), VL (p<.001, η2=.622), and VM (p=.002, η2=.375) showed significant differences between exercises. Spanish squats yielded greater BF activity than did wall squats (p=.018, η2=.269). ST yielded greater muscle activity with the BOSU ball than on the floor (p=.018, η2=.269). Finally, there was a significant ground exercise interaction effect on the co-activation, showing greater muscle co-activation with Spanish squats on the BOSU ball compared to squats, squats on the BOSU ball, and wall squat on the BOSU ball.CONCLUSIONS: The findings of this study indicate that Spanish squats could be an effective exercise option for the facilitation of RF, VL, VM, and BF muscle activation. In particular, performing Spanish squats on an unstable surface could be useful for patients who need to improve their quadriceps muscle activation.


2021 ◽  
Vol 10 (20) ◽  
pp. 4725
Author(s):  
Roberto Ucero-Lozano ◽  
Raúl Pérez-Llanes ◽  
José Antonio López-Pina ◽  
Rubén Cuesta-Barriuso

(1) Background: Hemophilic knee arthropathy is characterized by a loss of muscle mass and decreased strength of the quadriceps muscle. The visualization of movement aims to favor the recruitment of the motor system in the same premotor and parietal areas, as would happen with the active execution of the observed action. The aim was to evaluate changes in quadriceps activation in patients with hemophilic knee arthropathy following immersive VR visualization of knee extension movements. (2) Methods: We recruited 13 patients with severe hemophilia A and knee arthropathy. Patients underwent a 15 min session of immersive VR visualization of knee extension movements. The quadriceps muscle activation was evaluated by surface electromyography. (3) Results: After the intervention, there were no changes in the muscle activation of vastus medialis, vastus lateralis, or rectus femoris muscles. There was a large effect size of changes in rectus femoris muscle activation. Age and knee joint damage did not correlate with changes in quadriceps activation. Dominance, inhibitor development, and type of treatment were not related with post-intervention muscle activation. (4) Conclusions: A session of immersive VR visualization of knee extension movement does not modify quadriceps muscle activation. A specific protocol for patients with hemophilic knee arthropathy may be effective in improving the activation of the rectus femoris muscle.


Sign in / Sign up

Export Citation Format

Share Document