scholarly journals Distinct modes of manipulation of rice auxin response factor OsARF17 by different plant RNA viruses for infection

2020 ◽  
Vol 117 (16) ◽  
pp. 9112-9121 ◽  
Author(s):  
Hehong Zhang ◽  
Lulu Li ◽  
Yuqing He ◽  
Qingqing Qin ◽  
Changhai Chen ◽  
...  

Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be involved in plant resistance to pathogens. We show here that two fijiviruses (double-stranded RNA viruses) utilize their proteins to disturb the dimerization of OsARF17 and repress its transcriptional activation ability, while a tenuivirus (negative-sense single-stranded RNA virus) directly interferes with the DNA binding activity of OsARF17. These interactions impair OsARF17-mediated antiviral defense. OsARF17 also confers resistance to a cytorhabdovirus and was directly targeted by one of the viral proteins. Thus, OsARF17 is the common target of several very different viruses. This suggests that OsARF17 plays a crucial role in plant defense against different types of plant viruses, and that these viruses use independently evolved viral proteins to target this key component of auxin signaling and facilitate infection.

2005 ◽  
Vol 17 (5) ◽  
pp. 1387-1396 ◽  
Author(s):  
Yoshiaki Inukai ◽  
Tomoaki Sakamoto ◽  
Miyako Ueguchi-Tanaka ◽  
Yohko Shibata ◽  
Kenji Gomi ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 272
Author(s):  
Yue-Feng Wang ◽  
Xue-Yue Hou ◽  
Jun-Jie Deng ◽  
Zhi-Hong Yao ◽  
Man-Man Lyu ◽  
...  

Numerous Trichoderma strains have been reported to be optimal biofertilizers and biocontrol agents with low production costs and environmentally friendly properties. Trichoderma spp. promote the growth and immunity of plants by multiple means. Interfering with the hormonal homeostasis in plants is the most critical strategy. However, the mechanisms underlying plants’ responses to Trichoderma remain to be further elucidated. Auxin is the most important phytohormone that regulates almost every aspect of a plant’s life, especially the trade-off between growth and defense. The AUXIN RESPONSE FACTOR (ARF) family proteins are key players in auxin signaling. We studied the responses and functions of the PdPapARF1 gene in a hybrid poplar during its interaction with beneficial T. asperellum strains using transformed poplar plants with PdPapARF1 overexpression (on transcription level in this study). We report that PdPapARF1 is a positive regulator for promoting poplar growth and defense responses, as does T. asperellum inoculation. PdPapARF1 also turned out to be a positive stimulator of adventitious root formation. Particularly, the overexpression of PdPapARF1 induced a 32.3% increase in the height of 40-day-old poplar plants and a 258% increase in the amount of adventitious root of 3-week-old subcultured plant clones. Overexpressed PdPapARF1 exerted its beneficial functions through modulating the hormone levels of indole acetic acid (IAA), jasmonic acid (JA), and salicylic acid (SA) in plants and activating their signaling pathways, creating similar results as inoculated with T. asperellum. Particularly, in the overexpressing poplar plants, the IAA level increased by approximately twice of the wild-type plants; and the signaling pathways of IAA, JA, and SA were drastically activated than the wild-type plants under pathogen attacks. Our report presents the potential of ARFs as the crucial and positive responders in plants to Trichoderma inducing.


2012 ◽  
Vol 287 (10) ◽  
pp. 765-784 ◽  
Author(s):  
Jeong-Hwan Mun ◽  
Hee-Ju Yu ◽  
Ja Young Shin ◽  
Mijin Oh ◽  
Hyun-Ju Hwang ◽  
...  

2010 ◽  
Vol 63 (3) ◽  
pp. 225-234 ◽  
Author(s):  
Yan Liu ◽  
HaiYang Jiang ◽  
Wenjuan Chen ◽  
Yexiong Qian ◽  
Qing Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document