scholarly journals Modeling the transport of nuclear proteins along single skeletal muscle cells

2020 ◽  
Vol 117 (6) ◽  
pp. 2978-2986 ◽  
Author(s):  
Hermes Taylor-Weiner ◽  
Christopher L. Grigsby ◽  
Duarte M. S. Ferreira ◽  
José M. Dias ◽  
Molly M. Stevens ◽  
...  

Skeletal muscle cells contain hundreds of myonuclei within a shared cytoplasm, presenting unique challenges for regulating gene expression. Certain transcriptional programs (e.g., postsynaptic machinery) are segregated to specialized domains, while others (e.g., contractile proteins) do not show spatial confinement. Furthermore, local stimuli, such as denervation, can induce transcriptional responses that are propagated along the muscle cells. Regulated transport of nuclear proteins (e.g., transcription factors) between myonuclei represents a potential mechanism for coordinating gene expression. However, the principles underlying the transport of nuclear proteins within multinucleated cells remain poorly defined. Here we used a mosaic transfection model to create myotubes that contained exactly one myonucleus expressing a fluorescent nuclear reporter and monitored its distribution among all myonuclei. We found that the transport properties of these model nuclear proteins in myotubes depended on molecular weight and nuclear import rate, as well as on myotube width. Interestingly, muscle hypertrophy increased the transport of high molecular weight nuclear proteins, while atrophy restricted the transport of smaller nuclear proteins. We have developed a mathematical model of nuclear protein transport within a myotube that recapitulates the results of our in vitro experiments. To test the relevance to nuclear proteins expressed in skeletal muscle, we studied the transport of two transcription factors—aryl hydrocarbon receptor nuclear translocator and sine oculis homeobox 1—and found that their distributions were similar to the reporter proteins with corresponding molecular weights. Together, these results define a set of variables that can be used to predict the spatial distributions of nuclear proteins within a myotube.

1980 ◽  
Vol 186 (1) ◽  
pp. 211-216 ◽  
Author(s):  
G A Cates ◽  
P C Holland

1. Two distinct classes of protein were detected at the surface of chick-embryo skeletal-muscle cells after iodination of the cells in monolayer culture. 2. The two classes of iodinated proteins differed in their ability to co-purify with a vesicular plasma-membrane fraction prepared from surface-labelled cells. 3. One class consisted of predominantly high-molecular-weight glycoproteins that co-purified with the plasma-membrane fraction, but showed no significant qualitative or quantitative alterations in labelling with 125I and lactoperoxidase during myogenesis. 4. A second class of predominantly lower-molecular-weight proteins showed reproducible quantitative alterations in 125I-labelling during myogenesis but failed to co-purify with the plasma-membrane fraction. 5. This second class of proteins may represent matrix proteins involved in intercellular adhesion or adhesion of cells to the substratum. They are unlikely to be directly required for the process of plasma-membrane fusion during myogenesis, since they do not copurify with a vesicular plasma-membrane fraction known to be capable of Ca2+-dependent fusion in vitro.


2019 ◽  
Vol 40 (12) ◽  
pp. 803-809 ◽  
Author(s):  
Eva K. Langendorf ◽  
Anja Klein ◽  
Pol M. Rommens ◽  
Philipp Drees ◽  
Ulrike Ritz ◽  
...  

AbstractThe use of injections to treat structural muscle injuries is controversially discussed. In our controlled in vitro study, we investigated the biological impact of Actovegin and Traumeel alone and in combination on primary human skeletal muscle cells. Cells were characterized by immunofluorescence staining for myogenic factor 5 (Myf5) and MyoD, and cultured with or without Actovegin and / or Traumeel. The effects of these agents were assayed by cell viability and gene expression of the specific markers MyoD, Myf5, neural adhesion molecule (NCAM), and CD31. Myotube formation was determined by myosin staining. Neither Actovegin nor Traumeel showed toxic effects or influenced cell viability significantly. High volumes of Actovegin down-regulated gene expression of NCAM after 3 days but had no effect on MyoD, Myf5, and CD31 gene expression. High volumes of Traumeel inhibited MyoD gene expression after 3 days, whereas after 7 days MyoD expression was significantly up-regulated. The combination of both agents did not significantly influence cell viability or gene expression. This is the first study demonstrating that Actovegin and Traumeel potentially modulate human skeletal muscle cells. The relevance of these in vitro findings has to be highlighted in further in vivo studies.


2021 ◽  
Vol 11 (5) ◽  
pp. 2272
Author(s):  
Mansour Haddad

Background: Adenosine plays the role of regulating cell differentiation, proliferation, and apoptosis in various kinds of cells through the B-cell lymphoma 2 (BCL2) pathway. Objectives: Since anti-apoptotic (BCL2) expression plays a role in controlling apoptosis in some cell lines, this study was designed to investigate whether adenosine analogue, NECA (non-selective adenosine receptors agonist), selective adenosine A2B receptor antagonist, PSB 603, and a selective adenosine A2A receptor agonist, CG21680, affect BCL2-gene expression in the skeletal muscle cells of rats. The purpose of this investigation was to test the hypothesis that CG21680 treatment would significantly intensify BCL2 gene expression in rat skeletal muscle. Methods: Flasks measuring 25 cm2 were employed in culturing the rat L6 skeletal muscle cells. After treating these differential cells, the relative mRNA expression level for the BCL2 gene, at varying conditions of treatment, was measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: From the qRT-PCR analysis results, it was concluded that BCL2 expression was markedly amplified after selective adenosine A2A receptor agonist, CGS21680 (p < 0.01) treatment. More prospective validation for the adenosine receptors’ contribution in modulating apoptosis by NECA was delivered by the outcomes from the combined pre-treatment of the cells with NECA and PSB 603. These outcomes show that when starved skeletal muscle cells are treated with a combination of NECA and 100 nM PSB 603, there was a substantial decrease in comparison to either treatment used on its own. Conclusions: This study’s results showed, for the first time, an increase in BCL2 gene expression within skeletal muscle after CGS21680 treatment. Hence, the prospective escalation in BCL2 protein expression might have a protective role to play against apoptosis and avert damage to the skeletal muscle.


2005 ◽  
Vol 8 (3) ◽  
pp. 327-331 ◽  
Author(s):  
K.L. Jones ◽  
J. Harty ◽  
M.J. Roeder ◽  
T.A. Winters ◽  
W.J. Banz

1990 ◽  
Vol 40 (5) ◽  
pp. 1043-1048 ◽  
Author(s):  
Marie-Helene Disatnik ◽  
Sanford R. Sampson ◽  
Asher Shainberg

Sign in / Sign up

Export Citation Format

Share Document