scholarly journals Molecular dysregulation of ciliary polycystin-2 channels caused by variants in the TOP domain

2020 ◽  
Vol 117 (19) ◽  
pp. 10329-10338 ◽  
Author(s):  
Thuy N. Vien ◽  
Jinliang Wang ◽  
Leo C. T. Ng ◽  
Erhu Cao ◽  
Paul G. DeCaen

Genetic variants in PKD2 which encodes for the polycystin-2 ion channel are responsible for many clinical cases of autosomal dominant polycystic kidney disease (ADPKD). Despite our strong understanding of the genetic basis of ADPKD, we do not know how most variants impact channel function. Polycystin-2 is found in organelle membranes, including the primary cilium—an antennae-like structure on the luminal side of the collecting duct. In this study, we focus on the structural and mechanistic regulation of polycystin-2 by its TOP domain—a site with unknown function that is commonly altered by missense variants. We use direct cilia electrophysiology, cryogenic electron microscopy, and superresolution imaging to determine that variants of the TOP domain finger 1 motif destabilizes the channel structure and impairs channel opening without altering cilia localization and channel assembly. Our findings support the channelopathy classification of PKD2 variants associated with ADPKD, where polycystin-2 channel dysregulation in the primary cilia may contribute to cystogenesis.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Xiaowen Liu ◽  
Thuy Vien ◽  
Jingjing Duan ◽  
Shu-Hsien Sheu ◽  
Paul G DeCaen ◽  
...  

Mutations in the polycystin genes, PKD1 or PKD2, results in Autosomal Dominant Polycystic Kidney Disease (ADPKD). Although a genetic basis of ADPKD is established, we lack a clear understanding of polycystin proteins’ functions as ion channels. This question remains unsolved largely because polycystins localize to the primary cilium – a tiny, antenna-like organelle. Using a new ADPKD mouse model, we observe primary cilia that are abnormally long in cells associated with cysts after conditional ablation of Pkd1 or Pkd2. Using primary cultures of collecting duct cells, we show that polycystin-2, but not polycystin-1, is a required subunit for the ion channel in the primary cilium. The polycystin-2 channel preferentially conducts K+ and Na+; intraciliary Ca2+, enhances its open probability. We introduce a novel method for measuring heterologous polycystin-2 channels in cilia, which will have utility in characterizing PKD2 variants that cause ADPKD.


2020 ◽  
Vol 133 (24) ◽  
pp. jcs255562
Author(s):  
Thuy N. Vien ◽  
Leo C. T. Ng ◽  
Jessica M. Smith ◽  
Ke Dong ◽  
Matteus Krappitz ◽  
...  

ABSTRACTApproximately 15% of autosomal dominant polycystic kidney disease (ADPKD) is caused by variants in PKD2. PKD2 encodes polycystin-2, which forms an ion channel in primary cilia and endoplasmic reticulum (ER) membranes of renal collecting duct cells. Elevated internal Ca2+ modulates polycystin-2 voltage-dependent gating and subsequent desensitization – two biophysical regulatory mechanisms that control its function at physiological membrane potentials. Here, we refute the hypothesis that Ca2+ occupancy of the polycystin-2 intracellular EF hand is responsible for these forms of channel regulation, and, if disrupted, results in ADPKD. We identify and introduce mutations that attenuate Ca2+-EF hand affinity but find channel function is unaltered in the primary cilia and ER membranes. We generated two new mouse strains that harbor distinct mutations that abolish Ca2+-EF hand association but do not result in a PKD phenotype. Our findings suggest that additional Ca2+-binding sites within polycystin-2 or Ca2+-dependent modifiers are responsible for regulating channel activity.


Author(s):  
Steven J. Kleene ◽  
Nancy K. Kleene

In 15% of cases, autosomal dominant polycystic kidney disease (ADPKD) arises from defects in polycystin-2 (PC2). PC2 is a member of the TRPP subfamily of cation-conducting channels and is expressed in the endoplasmic reticulum and primary cilium of renal epithelial cells. PC2 opposes a pro-cystogenic influence of the cilium, and it has been proposed that this beneficial effect is mediated in part by a flow of Ca2+ through PC2 channels into the primary cilium. However, previous efforts to determine the permeability of PC2 channels to Ca2+ have yielded widely varying results. Here we report the mean macroscopic Ca2+ influx through native PC2 channels in the primary cilia of mIMCD-3 cells, which are derived from murine inner medullary collecting duct. Under conditions designed to isolate inward Ca2+ currents, a small inward Ca2+ current was detected in cilia with active PC2 channels, but not in cilia lacking those channels. The current was activated by addition of 10 µM internal Ca2+, which is known to activate ciliary PC2 channels. It was blocked by 10 µM isosakuranetin, which blocks the same channels. On average, the current amplitude was −1.8 pA at −190 mV; its conductance from −50 to −200 mV averaged 20 pS. Thus the native PC2 channels of renal primary cilium are able to conduct a small but detectable Ca2+ influx under the conditions tested. The possible consequences of this influx are discussed.


2017 ◽  
Author(s):  
Xiaowen Liu ◽  
Thuy Vien ◽  
Jingjing Duan ◽  
Shu-Hsien Sheu ◽  
Paul G. DeCaen ◽  
...  

ABSTRACTMutations in either Pkd1 or Pkd2 result in Autosomal Dominant Polycystic Kidney Disease (ADPKD). Although PKD2 is proposed to be an ion channel subunit, recordings of PKD2 ion channels conflict in their properties. Using a new ADPKD mouse model, we observe primary cilia are abnormally long in cells associated with cysts. Using primary cultures of collecting duct epithelial cells, we show that PKD2, but not PKD1, is a required subunit for primary cilia ion channel. The ciliary PKD2 channel conducts potassium and sodium ions, but little calcium. We also demonstrate that PKD2 is not constitutively active in the plasma membrane, but PKD2 channels are functional in primary cilia and are sensitized by high cilioplasmic [Ca2+]. We introduce a novel method for measuring PKD2 channels heterologously expressed in primary cilia of HEK-293 cells, which will have utility characterizing Pkd2 variants that cause ADPKD in their native ciliary membrane.


2002 ◽  
Vol 282 (3) ◽  
pp. F541-F552 ◽  
Author(s):  
Bradley K. Yoder ◽  
Albert Tousson ◽  
Leigh Millican ◽  
John H. Wu ◽  
Charles E. Bugg ◽  
...  

Cilia are organelles that play diverse roles, from fluid movement to sensory reception. Polaris, a protein associated with cystic kidney disease in Tg737°rpkmice, functions in a ciliogenic pathway. Here, we explore the role of polaris in primary cilia on Madin-Darby canine kidney cells. The results indicate that polaris localization and solubility change dramatically during cilia formation. These changes correlate with the formation of basal bodies and large protein rafts at the apical surface of the epithelia. A cortical collecting duct cell line has been derived from mice with a mutation in the Tg737 gene. These cells do not develop normal cilia, which can be corrected by reexpression of the wild-type Tg737 gene. These data suggest that the primary cilia are important for normal renal function and/or development and that the ciliary defect may be a contributing factor to the cystic disease in Tg737°rpkmice. Further characterization of these cells will be important in elucidating the physiological role of renal cilia and in determining their relationship to cystic disease.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Akira Karasawa ◽  
Toshimitsu Kawate

The P2X7 receptor is a non-selective cation channel activated by extracellular adenosine triphosphate (ATP). Chronic activation of P2X7 underlies many health problems such as pathologic pain, yet we lack effective antagonists due to poorly understood mechanisms of inhibition. Here we present crystal structures of a mammalian P2X7 receptor complexed with five structurally-unrelated antagonists. Unexpectedly, these drugs all bind to an allosteric site distinct from the ATP-binding pocket in a groove formed between two neighboring subunits. This novel drug-binding pocket accommodates a diversity of small molecules mainly through hydrophobic interactions. Functional assays propose that these compounds allosterically prevent narrowing of the drug-binding pocket and the turret-like architecture during channel opening, which is consistent with a site of action distal to the ATP-binding pocket. These novel mechanistic insights will facilitate the development of P2X7-specific drugs for treating human diseases.


2001 ◽  
Vol 12 (3) ◽  
pp. 598-601 ◽  
Author(s):  
GEORGES DESCHÊNES ◽  
MONIKA WITTNER ◽  
ANTONIO DI STEFANO ◽  
SYLVIE JOUNIER ◽  
ALAIN DOUCET

Abstract. Micropuncture studies of the distal nephron and measurements of Na,K-ATPase activity in microdissected collecting tubules have suggested that renal retention of sodium in puromycin aminonucleoside (PAN) nephrotic rats originates in the collecting duct. The present study demonstrated this hypothesis by in vitro microperfusion and showed that amiloride was able to restore sodium balance. Indeed, isolated perfused cortical collecting ducts from PAN-treated rats exhibited an abnormally high transepithelial sodium reabsorption that was abolished by amiloride, and in vivo administration of amiloride fully prevented decreased urinary sodium excretion and positive sodium balance in nephrotic rats. As expected from the aldosterone independence of Na+ retention in PAN nephrotic rats, blockade of aldosterone receptor by potassium canrenoate did not alter urinary Na+ excretion, Na+ balance, or ascites formation in PAN nephrotic rats.


Physiology ◽  
2015 ◽  
Vol 30 (3) ◽  
pp. 195-207 ◽  
Author(s):  
Takamitsu Saigusa ◽  
P. Darwin Bell

Autosomal-dominant polycystic kidney disease (ADPKD) is the most prevalent inherited renal disease, characterized by multiple cysts that can eventually lead to kidney failure. Studies investigating the role of primary cilia and polycystins have significantly advanced our understanding of the pathogenesis of PKD. This review will present clinical and basic aspects of ADPKD, review current concepts of PKD pathogenesis, evaluate potential therapeutic targets, and highlight challenges for future clinical studies.


1992 ◽  
Vol 262 (2) ◽  
pp. F177-F184 ◽  
Author(s):  
R. J. Riese ◽  
N. S. Mandel ◽  
J. H. Wiessner ◽  
G. S. Mandel ◽  
C. G. Becker ◽  
...  

The relationship between cell membrane polarity and calcium oxalate (CaOx) crystal binding was studied in rat renal inner medullary collecting duct (IMCD) cells in primary culture. Cultures grew as simple monolayers (M) with interspersed cellular aggregates (A), and CaOx bound preferentially to A. An antibody that recognizes an exclusively basolateral epitope in intact IMCD binds to some of the cells in A but not to cells in M. Lysing of intercellular junctions with 3 mM EGTA (monitored by transepithelial resistance, R) resulted in basolateral antibody binding to the previously negative cells in M and a 21-fold increase in CaOx adherence to M over control (P less than 0.01). Enhanced CaOx attachment appeared to lag behind the fall in R by 5–10 min. Crystal attachment returned to control between 30 and 120 min after removal of EGTA and readdition of Ca. These data suggest that loss of epithelial membrane polarity may result in enhanced capacity to bind CaOx. Such loss of cell membrane polarity may occur in IMCD with some forms of epithelial injury and repair and may provide a site of crystal fixation to initiate nephrolithiasis.


Sign in / Sign up

Export Citation Format

Share Document