scholarly journals Economic evaluation of sea-level rise adaptation strongly influenced by hydrodynamic feedbacks

2021 ◽  
Vol 118 (29) ◽  
pp. e2025961118
Author(s):  
Michelle A. Hummel ◽  
Robert Griffin ◽  
Katie Arkema ◽  
Anne D. Guerry

Coastal communities rely on levees and seawalls as critical protection against sea-level rise; in the United States alone, $300 billion in shoreline armoring costs are forecast by 2100. However, despite the local flood risk reduction benefits, these structures can exacerbate flooding and associated damages along other parts of the shoreline—particularly in coastal bays and estuaries, where nearly 500 million people globally are at risk from sea-level rise. The magnitude and spatial distribution of the economic impact of this dynamic, however, are poorly understood. Here we combine hydrodynamic and economic models to assess the extent of both local and regional flooding and damages expected from a range of shoreline protection and sea-level rise scenarios in San Francisco Bay, California. We find that protection of individual shoreline segments (5 to 75 km) can increase flooding in other areas by as much as 36 million m3 and damages by $723 million for a single flood event and in some cases can even cause regional flood damages that exceed the local damages prevented from protection. We also demonstrate that strategic flooding of certain shoreline segments, such as those with gradually sloping baylands and space for water storage, can help alleviate flooding and damages along other stretches of the coastline. By matching the scale of the economic assessment to the scale of the threat, we reveal the previously uncounted costs associated with uncoordinated adaptation actions and demonstrate that a regional planning perspective is essential for reducing shared risk and wisely spending adaptation resources in coastal bays.

2018 ◽  
Vol 13 (3) ◽  
pp. 193-214 ◽  
Author(s):  
Carol Considine ◽  
Emily Steinhilber

INTRODUCTION The Hampton Roads region is located in southeastern Virginia where the Chesapeake Bay meets the Atlantic Ocean. The region includes seventeen municipal governments and has a large federal government presence with 26 federal agencies represented (See Figure 1). The region has a population that exceeds 1.7 million and is home to the deepest water harbor on the U.S. East Coast. Hampton Roads' economy is dependent on the local waterways and houses the world's largest naval facility, the sixth largest containerized cargo complex and supports a thriving shipbuilding and repair industry as well as a tourism industry. However, the region's vast coastline also contributes to its vulnerability from climate change. Hampton Roads is experiencing sea level rise at twice the global rate with regional projections in the January 2017 National Oceanic and Atmospheric Administration (NOAA) report, Global and Regional Sea Level Rise Scenarios for the United States, of 1.9 feet of sea level rise at the low end and 11.5 feet of sea level rise under the most extreme case between 2000 and 2100 (NOAA, 2017). Planning for adaptation to sea level rise requires regional partnerships and strategies, especially for watersheds that cross municipal boundaries. While many of the municipalities in the region are forward thinking in their approaches to sea level rise, there is not a regional plan for adaptation and current federal funding models do not support analysis of and planning for sea level rise impacts on a regional scale. For coastal communities to be successful in sea level rise adaptation, there has to be a national understanding that water knows no borders and only collaborative problem-solving approaches that cross municipal boundaries will move regions toward adaptation. Functional boundaries of ecosystems or watersheds need to be the focus of adaptation rather than political boundaries of local, state, and federal entities. Coordination and collaboration between entities is the only way to achieve optimal outcomes.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9044
Author(s):  
Adam T. Carpenter

Sea level rise poses a substantial concern to communities worldwide. Increased inundation, storm surge, saltwater intrusion, and other impacts create challenges which will require considerable planning to address. Recognizing the broad and differing scope of sea level rise issues and the variability of policy options to address them, local planning frameworks are necessary in addition to tools and resources available from state and federal governments. To help assess priorities and preferences on sea level rise planning, a survey of 503 persons affiliated with coastal communities on the East Coast of the United States was conducted in December 2017. This survey studied key aspects locally-driven sea level rise plans, including planning priorities, funding options, methods to resolve conflict, and potential responses. Six key findings address these and other concerns to provide the foundation of a locally driven framework for public officials.


2021 ◽  
Vol 167 (3-4) ◽  
Author(s):  
Mark Lubell ◽  
Mark Stacey ◽  
Michelle A. Hummel

AbstractThis paper translates Ostrom’s “diagnostic approach” for social-ecological systems to identify the collective action problems and core governance barriers for sea-level rise adaptation in the San Francisco Bay Area. The diagnostic approach considers variables related to the resource system, the resource units, the users, and the governance system. Coupled ecological-infrastructure models identify two core collective action problems: vulnerability interdependency and adaptation interdependency. Qualitative social science case study methods identify the key structural governance and behavioral barriers to cooperation and ongoing activities to address them. The diagnostic approach is potentially applicable to any coastal regions that are vulnerable to sea-level rise and also other climate adaptation issues where vulnerability and adaptation interdependencies require overcoming governance challenges to collective action.


2017 ◽  
Author(s):  
Mathew Hauer

Many sea level rise assessments focus on populations presently inhabiting vulnerable coastal communities, but to date no studies have attempted to model the destinations of these potentially displaced persons. With millions of potential future migrants in heavily populated coastal communities, sea level rise scholarship focusing solely on coastal communities characterizes sea level rise as primarily a coastal issue, obscuring the potential impacts in landlocked communities created by sea level rise induced displacement. Here I address this issue by merging projected populations at-risk of sea level rise with migration systems simulations to project future destinations of sea level rise migrants in the United States (U.S.). I find that unmitigated sea level rise is expected to reshape the U.S. population distribution, potentially stressing landlocked areas unprepared to accommodate this wave of coastal migrants -- even after accounting for potential adaptation. These results provide the first glimpse of how climate change will reshape future population distributions and establishes a new foundation for modelling potential migration destinations from climate stressors in an era of global environmental change.


2016 ◽  
Vol 35 (3) ◽  
pp. 31-37 ◽  
Author(s):  
Albert Parker

Abstract We show here the presence of significant “coldspot” of sea level rise along the West Coast of the United States and Canada (including Alaska). The 30-years sea level for the area are mostly falling also at subsiding locations as San Francisco and Seattle where subsidence is responsible for a long term positive rate of rise. The 20 long term tide gauges of the area of length exceeding the 60-years length have a naïve average rate of rise −0.729 mm/year in the update 30-Apr-2015, down from −0.624 mm/year in the update 14-Feb-2014. Therefore, along the West Coast of the United States and Canada the sea levels are on average falling, and becoming more and more negative.


2020 ◽  
Vol 6 (31) ◽  
pp. eaba4551 ◽  
Author(s):  
Em Blackwell ◽  
Manoochehr Shirzaei ◽  
Chandrakanta Ojha ◽  
Susanna Werth

Coastal vertical land motion affects projections of sea-level rise, and subsidence exacerbates flooding hazards. Along the ~1350-km California coastline, records of high-resolution vertical land motion rates are scarce due to sparse instrumentation, and hazards to coastal communities are underestimated. Here, we considered a ~100-km-wide swath of land along California’s coast and performed a multitemporal interferometric synthetic aperture radar (InSAR) analysis of large datasets, obtaining estimates of vertical land motion rates for California’s entire coast at ~100-m dimensions—a ~1000-fold resolution improvement to the previous record. We estimate between 4.3 million and 8.7 million people in California’s coastal communities, including 460,000 to 805,000 in San Francisco, 8000 to 2,300,00 in Los Angeles, and 2,000,000 to 2,300,000 in San Diego, are exposed to subsidence. The unprecedented detail and submillimeter accuracy resolved in our vertical land motion dataset can transform the analysis of natural and anthropogenic changes in relative sea-level and associated hazards.


Author(s):  
Gabriel Kaprielian ◽  

The waterfront along the San Francisco Bay is facing a growing threat from sea-level rise. Over the years, the Bay Area has seen a large portion of the historic wetlands filled or leveled off for residential, commercial, and industrial land uses. According to current sea level rise projections, water will once again reclaim the bay lands that have been filled. The issues presented by sea level rise along the urban edge of the San Francisco Bay involve a complex series of challenges including: regional versus local governance, built versus natural environment, vulnerable local and regional infrastructure, diverging interests with diverse stakeholders, and population growth. With each possible future scenario come multiple outcomes with winners and losers. How can the best policy and design be selected and tested? How will distinct communities learn about different options and strategies for adaptation and be empowered to act? By creating and playing a sea level rise adaptation “game,” student were able to explore these different scenarios and inform future urban planning and design decisions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin H. Strauss ◽  
Philip M. Orton ◽  
Klaus Bittermann ◽  
Maya K. Buchanan ◽  
Daniel M. Gilford ◽  
...  

AbstractIn 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B–$14.0B, 5th–95th percentiles) of Sandy’s damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40–131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1142
Author(s):  
Juliano Calil ◽  
Geraldine Fauville ◽  
Anna Carolina Muller Queiroz ◽  
Kelly L. Leo ◽  
Alyssa G. Newton Mann ◽  
...  

As coastal communities around the globe contend with the impacts of climate change including coastal hazards such as sea level rise and more frequent coastal storms, educating stakeholders and the general public has become essential in order to adapt to and mitigate these risks. Communicating SLR and other coastal risks is not a simple task. First, SLR is a phenomenon that is abstract as it is physically distant from many people; second, the rise of the sea is a slow and temporally distant process which makes this issue psychologically distant from our everyday life. Virtual reality (VR) simulations may offer a way to overcome some of these challenges, enabling users to learn key principles related to climate change and coastal risks in an immersive, interactive, and safe learning environment. This article first presents the literature on environmental issues communication and engagement; second, it introduces VR technology evolution and expands the discussion on VR application for environmental literacy. We then provide an account of how three coastal communities have used VR experiences developed by multidisciplinary teams—including residents—to support communication and community outreach focused on SLR and discuss their implications.


Sign in / Sign up

Export Citation Format

Share Document