Taylor’s law of fluctuation scaling for semivariances and higher moments of heavy-tailed data

2021 ◽  
Vol 118 (46) ◽  
pp. e2108031118
Author(s):  
Mark Brown ◽  
Joel E. Cohen ◽  
Chuan-Fa Tang ◽  
Sheung Chi Phillip Yam

We generalize Taylor’s law for the variance of light-tailed distributions to many sample statistics of heavy-tailed distributions with tail index α in (0, 1), which have infinite mean. We show that, as the sample size increases, the sample upper and lower semivariances, the sample higher moments, the skewness, and the kurtosis of a random sample from such a law increase asymptotically in direct proportion to a power of the sample mean. Specifically, the lower sample semivariance asymptotically scales in proportion to the sample mean raised to the power 2, while the upper sample semivariance asymptotically scales in proportion to the sample mean raised to the power (2−α)/(1−α)>2. The local upper sample semivariance (counting only observations that exceed the sample mean) asymptotically scales in proportion to the sample mean raised to the power (2−α2)/(1−α). These and additional scaling laws characterize the asymptotic behavior of commonly used measures of the risk-adjusted performance of investments, such as the Sortino ratio, the Sharpe ratio, the Omega index, the upside potential ratio, and the Farinelli–Tibiletti ratio, when returns follow a heavy-tailed nonnegative distribution. Such power-law scaling relationships are known in ecology as Taylor’s law and in physics as fluctuation scaling. We find the asymptotic distribution and moments of the number of observations exceeding the sample mean. We propose estimators of α based on these scaling laws and the number of observations exceeding the sample mean and compare these estimators with some prior estimators of α.

Author(s):  
Joel E. Cohen ◽  
Richard A. Davis ◽  
Gennady Samorodnitsky

Pillai & Meng (Pillai & Meng 2016 Ann. Stat. 44 , 2089–2097; p. 2091) speculated that ‘the dependence among [random variables, rvs] can be overwhelmed by the heaviness of their marginal tails ·· ·’. We give examples of statistical models that support this speculation. While under natural conditions the sample correlation of regularly varying (RV) rvs converges to a generally random limit, this limit is zero when the rvs are the reciprocals of powers greater than one of arbitrarily (but imperfectly) positively or negatively correlated normals. Surprisingly, the sample correlation of these RV rvs multiplied by the sample size has a limiting distribution on the negative half-line. We show that the asymptotic scaling of Taylor’s Law (a power-law variance function) for RV rvs is, up to a constant, the same for independent and identically distributed observations as for reciprocals of powers greater than one of arbitrarily (but imperfectly) positively correlated normals, whether those powers are the same or different. The correlations and heterogeneity do not affect the asymptotic scaling. We analyse the sample kurtosis of heavy-tailed data similarly. We show that the least-squares estimator of the slope in a linear model with heavy-tailed predictor and noise unexpectedly converges much faster than when they have finite variances.


2021 ◽  
Vol 118 (50) ◽  
pp. e2118893118
Author(s):  
W. Brent Lindquist ◽  
Svetlozar T. Rachev

2002 ◽  
Vol 18 (5) ◽  
pp. 1019-1039 ◽  
Author(s):  
Tucker McElroy ◽  
Dimitris N. Politis

The problem of statistical inference for the mean of a time series with possibly heavy tails is considered. We first show that the self-normalized sample mean has a well-defined asymptotic distribution. Subsampling theory is then used to develop asymptotically correct confidence intervals for the mean without knowledge (or explicit estimation) either of the dependence characteristics, or of the tail index. Using a symmetrization technique, we also construct a distribution estimator that combines robustness and accuracy: it is higher-order accurate in the regular case, while remaining consistent in the heavy tailed case. Some finite-sample simulations confirm the practicality of the proposed methods.


Author(s):  
Stefan Thurner ◽  
Rudolf Hanel ◽  
Peter Klimekl

Phenomena, systems, and processes are rarely purely deterministic, but contain stochastic,probabilistic, or random components. For that reason, a probabilistic descriptionof most phenomena is necessary. Probability theory provides us with the tools for thistask. Here, we provide a crash course on the most important notions of probabilityand random processes, such as odds, probability, expectation, variance, and so on. Wedescribe the most elementary stochastic event—the trial—and develop the notion of urnmodels. We discuss basic facts about random variables and the elementary operationsthat can be performed on them. We learn how to compose simple stochastic processesfrom elementary stochastic events, and discuss random processes as temporal sequencesof trials, such as Bernoulli and Markov processes. We touch upon the basic logic ofBayesian reasoning. We discuss a number of classical distribution functions, includingpower laws and other fat- or heavy-tailed distributions.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 70
Author(s):  
Mei Ling Huang ◽  
Xiang Raney-Yan

The high quantile estimation of heavy tailed distributions has many important applications. There are theoretical difficulties in studying heavy tailed distributions since they often have infinite moments. There are also bias issues with the existing methods of confidence intervals (CIs) of high quantiles. This paper proposes a new estimator for high quantiles based on the geometric mean. The new estimator has good asymptotic properties as well as it provides a computational algorithm for estimating confidence intervals of high quantiles. The new estimator avoids difficulties, improves efficiency and reduces bias. Comparisons of efficiencies and biases of the new estimator relative to existing estimators are studied. The theoretical are confirmed through Monte Carlo simulations. Finally, the applications on two real-world examples are provided.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 56
Author(s):  
Haoyu Niu ◽  
Jiamin Wei ◽  
YangQuan Chen

Stochastic Configuration Network (SCN) has a powerful capability for regression and classification analysis. Traditionally, it is quite challenging to correctly determine an appropriate architecture for a neural network so that the trained model can achieve excellent performance for both learning and generalization. Compared with the known randomized learning algorithms for single hidden layer feed-forward neural networks, such as Randomized Radial Basis Function (RBF) Networks and Random Vector Functional-link (RVFL), the SCN randomly assigns the input weights and biases of the hidden nodes in a supervisory mechanism. Since the parameters in the hidden layers are randomly generated in uniform distribution, hypothetically, there is optimal randomness. Heavy-tailed distribution has shown optimal randomness in an unknown environment for finding some targets. Therefore, in this research, the authors used heavy-tailed distributions to randomly initialize weights and biases to see if the new SCN models can achieve better performance than the original SCN. Heavy-tailed distributions, such as Lévy distribution, Cauchy distribution, and Weibull distribution, have been used. Since some mixed distributions show heavy-tailed properties, the mixed Gaussian and Laplace distributions were also studied in this research work. Experimental results showed improved performance for SCN with heavy-tailed distributions. For the regression model, SCN-Lévy, SCN-Mixture, SCN-Cauchy, and SCN-Weibull used less hidden nodes to achieve similar performance with SCN. For the classification model, SCN-Mixture, SCN-Lévy, and SCN-Cauchy have higher test accuracy of 91.5%, 91.7% and 92.4%, respectively. Both are higher than the test accuracy of the original SCN.


Sign in / Sign up

Export Citation Format

Share Document