Defined core–shell particles as the key to complex interfacial self-assembly

2021 ◽  
Vol 118 (52) ◽  
pp. e2113394118
Author(s):  
Johannes Menath ◽  
Jack Eatson ◽  
Robert Brilmayer ◽  
Annette Andrieu-Brunsen ◽  
D. Martin A. Buzza ◽  
...  

The two-dimensional self-assembly of colloidal particles serves as a model system for fundamental studies of structure formation and as a powerful tool to fabricate functional materials and surfaces. However, the prevalence of hexagonal symmetries in such self-assembling systems limits its structural versatility. More than two decades ago, Jagla demonstrated that core–shell particles with two interaction length scales can form complex, nonhexagonal minimum energy configurations. Based on such Jagla potentials, a wide variety of phases including cluster lattices, chains, and quasicrystals have been theoretically discovered. Despite the elegance of this approach, its experimental realization has remained largely elusive. Here, we capitalize on the distinct interfacial morphology of soft particles to design two-dimensional assemblies with structural complexity. We find that core–shell particles consisting of a silica core surface functionalized with a noncrosslinked polymer shell efficiently spread at a liquid interface to form a two-dimensional polymer corona surrounding the core. We controllably grow such shells by iniferter-type controlled radical polymerization. Upon interfacial compression, the resulting core–shell particles arrange in well-defined dimer, trimer, and tetramer lattices before transitioning into complex chain and cluster phases. The experimental phase behavior is accurately reproduced by Monte Carlo simulations and minimum energy calculations, suggesting that the interfacial assembly interacts via a pairwise-additive Jagla-type potential. By comparing theory, simulation, and experiment, we narrow the Jagla g-parameter of the system to between 0.9 and 2. The possibility to control the interaction potential via the interfacial morphology provides a framework to realize structural features with unprecedented complexity from a simple, one-component system.

2018 ◽  
Vol 74 (11) ◽  
pp. 1434-1439
Author(s):  
Hong-Tao Zhang ◽  
Xiao-Long Wang

In recent years, much initial interest and enthusiasm has focused on the self-assembly of coordination polymers due to the aesthetics of their crystalline architectures and their potential applications as new functional materials. As part of an exploration of chiral coordination polymers, a new twofold interpenetrated two-dimensional (2D) coordination polymer, namely, poly[[tetraaquabis[μ3-(2R,2′R)-2,2′-(benzene-1,4-dicarboxamido)dipropionato-κ5 O,O′:O′′,O′′′:O′′]dicadmium(II)] trihydrate], {[Cd2(C14H14N2O6)2(H2O)4]·3H2O} n , has been synthesized by the reaction of Cd(CH3COO)2·2H2O with the designed ligand (2R,2′R)-2,2′-(benzene-1,4-dicarboxamido)dipropionic acid (H2 L). The compound has been structurally characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction and single-crystal X-ray diffraction analysis. In the crystal structure, each CdII cation binds to three carboxylate groups from two crystallographically independent L 2− dianions. Four carboxylate groups link two crystallographically independent cadmium cations into a 4,4-connected secondary building unit (SBU). The resulting SBUs are extended into a two-dimensional folding sheet via the terephthalamide moiety of the ligand as a spacer, which can be simplified as a (4,4)-connected 4,4L15 net with the point symbol (3.53.62)(32.52.62). In the lattice, two independent folding sheets interpenetrate each other to yield a double-sheet layer. The resulting 2D layers pack in parallel arrays through intermolecular hydrogen bonds and interlayer π–π interactions. The thermal stability and photoluminescence properties of the title compound have been investigated and it exhibits an enhanced fluorescence emission and a longer lifetime compared with free H2 L.


Langmuir ◽  
1995 ◽  
Vol 11 (8) ◽  
pp. 2975-2978 ◽  
Author(s):  
Mariko Yamaki ◽  
Junichi Higo ◽  
Kuniaki Nagayama

2013 ◽  
Vol 16 (3) ◽  
pp. 513-524 ◽  
Author(s):  
Ivo Leibacher ◽  
Wolfgang Dietze ◽  
Philipp Hahn ◽  
Jingtao Wang ◽  
Steven Schmitt ◽  
...  

Science ◽  
2020 ◽  
Vol 369 (6506) ◽  
pp. 950-955
Author(s):  
Carla Fernández-Rico ◽  
Massimiliano Chiappini ◽  
Taiki Yanagishima ◽  
Heidi de Sousa ◽  
Dirk G. A. L. Aarts ◽  
...  

Understanding the impact of curvature on the self-assembly of elongated microscopic building blocks, such as molecules and proteins, is key to engineering functional materials with predesigned structure. We develop model “banana-shaped” colloidal particles with tunable dimensions and curvature, whose structure and dynamics are accessible at the particle level. By heating initially straight rods made of SU-8 photoresist, we induce a controllable shape deformation that causes the rods to buckle into banana-shaped particles. We elucidate the phase behavior of differently curved colloidal bananas using confocal microscopy. Although highly curved bananas only form isotropic phases, less curved bananas exhibit very rich phase behavior, including biaxial nematic phases, polar and antipolar smectic-like phases, and even the long-predicted, elusive splay-bend nematic phase.


2016 ◽  
Vol 8 (2) ◽  
pp. 1493-1500 ◽  
Author(s):  
Houwen Matthew Pan ◽  
Maximilian Seuss ◽  
Martin P. Neubauer ◽  
Dieter W. Trau ◽  
Andreas Fery

Sign in / Sign up

Export Citation Format

Share Document