scholarly journals Stochastic rectification of fast oscillations on slow manifold closures

2021 ◽  
Vol 118 (48) ◽  
pp. e2113650118
Author(s):  
Mickaël D. Chekroun ◽  
Honghu Liu ◽  
James C. McWilliams

The problems of identifying the slow component (e.g., for weather forecast initialization) and of characterizing slow–fast interactions are central to geophysical fluid dynamics. In this study, the related rectification problem of slow manifold closures is addressed when breakdown of slow-to-fast scales deterministic parameterizations occurs due to explosive emergence of fast oscillations on the slow, geostrophic motion. For such regimes, it is shown on the Lorenz 80 model that if 1) the underlying manifold provides a good approximation of the optimal nonlinear parameterization that averages out the fast variables and 2) the residual dynamics off this manifold is mainly orthogonal to it, then no memory terms are required in the Mori–Zwanzig full closure. Instead, the noise term is key to resolve, and is shown to be, in this case, well modeled by a state-independent noise, obtained by means of networks of stochastic nonlinear oscillators. This stochastic parameterization allows, in turn, for rectifying the momentum-balanced slow manifold, and for accurate recovery of the multiscale dynamics. The approach is promising to be further applied to the closure of other more complex slow–fast systems, in strongly coupled regimes.

2016 ◽  
Author(s):  
Xueling Liu ◽  
Arthur P. Mizzi ◽  
Jeffrey L. Anderson ◽  
Inez Fung ◽  
Ronald C. Cohen

Abstract. Observations of trace gases from space based instruments offer the opportunity to constrain chemical and weather forecast and reanalysis models using the tools of data assimilation. To date, attempts at assimilation of nitrogen dioxide (NO2) satellite remote sensing have focused on updating emissions and concentrations. These initial efforts evaluated updates at length scales of ~ 100 km using once a day measurements from satellites with ground pixels of 13 km × 24 km or larger. In the boundary layer, NO2 has a lifetime on the order of five hours and corresponding 1/e concentration variations near urban and point sources occur on spatial scales on the order of 50–75 km. Accurate observations and modeling of these variations require spatial resolution of order 4 km. In addition, because of the short lifetime, NO2 variations are more strongly coupled to short time scale meteorological parameters than longer lived chemicals such as CO or CO2. In the next few years, we anticipate the launch of several instruments with ~ 3 km spatial resolution. In addition, some of these instruments will be in geostationary orbits and thus have hourly revisit times. In anticipation of these instruments, we investigate the potential of high space and time resolution column measurements to serve as constraints on urban NOx emissions using a geostationary observation simulator coupled to a data assimilation system. We find that constraints on emissions are strongest in regions with high emissions and are most effective when coupled to hourly assimilation of meteorological observations. We find that errors in the meteorological fields result in unrecoverable biases in the updated emissions confirming a conjecture that simultaneous meteorology and chemical assimilation is essential to accurate description of the emissions and chemistry.


2018 ◽  
Author(s):  
Mallory Carlu ◽  
Francesco Ginelli ◽  
Valerio Lucarini ◽  
Antonio Politi

Abstract. We investigate the geometrical structure of instabilities in the two-scales Lorenz '96 model through the prism of Lyapunov analysis. Our detailed study of the full spectrum of covariant Lyapunov vectors reveals the presence of a slow manifold in tangent space, composed by a set of vectors with a significant projection on the slow degrees of freedom; they correspond to the smallest (in absolute sense) Lyapunov exponents and thereby to the longer time scales. We show that the dimension of this manifold is extensive in the number of both slow and fast degrees of freedom, and discuss its relationship with the results of a finite-size analysis of instabilities, supporting the conjecture that the slow-variable behavior is effectively determined by a non-trivial subset of degrees of freedom. More precisely, we show that the slow manifold corresponds to the Lyapunov spectrum region where fast and slow instability rates overlap, mixing their evolution into a set of vectors which simultaneously carry information on both scales. We suggest these results may pave the way for future applications to ensemble forecasting and data assimilation in weather and climate models.


1989 ◽  
Vol 32 (3) ◽  
pp. 681-687 ◽  
Author(s):  
C. Formby ◽  
B. Albritton ◽  
I. M. Rivera

We describe preliminary attempts to fit a mathematical function to the slow-component eye velocity (SCV) over the time course of caloric-induced nystagmus. Initially, we consider a Weibull equation with three parameters. These parameters are estimated by a least-squares procedure to fit digitized SCV data. We present examples of SCV data and fitted curves to show how adjustments in the parameters of the model affect the fitted curve. The best fitting parameters are presented for curves fit to 120 warm caloric responses. The fitting parameters and the efficacy of the fitted curves are compared before and after the SCV data were smoothed to reduce response variability. We also consider a more flexible four-parameter Weibull equation that, for 98% of the smoothed caloric responses, yields fits that describe the data more precisely than a line through the mean. Finally, we consider advantages and problems in fitting the Weibull function to caloric data.


2003 ◽  
Vol 21 (1) ◽  
pp. 39-47 ◽  
Author(s):  
ALFREDO SANTALLA ◽  
MARGARITA PÉREZ ◽  
MANUEL MONTILLA ◽  
LÁZARO VICENTE ◽  
RICHARD DAVISON ◽  
...  

2000 ◽  
Vol 10 (PR5) ◽  
pp. Pr5-271-Pr5-274
Author(s):  
H. Totsuji ◽  
K. Tsuruta ◽  
C. Totsuji ◽  
K. Nakano ◽  
T. Kishimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document