scholarly journals Environmental control of marine phytoplankton stoichiometry in the North Atlantic Ocean

2021 ◽  
Vol 119 (1) ◽  
pp. e2114602118
Author(s):  
Boris Sauterey ◽  
Ben A. Ward

The stoichiometric coupling of carbon to limiting nutrients in marine phytoplankton regulates the magnitude of biological carbon sequestration in the ocean. While clear links between plankton C:N ratios and environmental drivers have been identified, the nature and direction of these links, as well as their underlying physiological and ecological controls, remain uncertain. We show, with a well-constrained mechanistic model of plankton ecophysiology, that while nitrogen availability and temperature emerge as the main drivers of phytoplankton C:N stoichiometry in the North Atlantic, the biological mechanisms involved vary depending on the spatiotemporal scale and region considered. We find that phytoplankton C:N stoichiometry is overall controlled by nitrogen availability below 40° N, predominantly driven by ecoevolutionary shifts in the functional composition of the phytoplankton communities, while phytoplankton stoichiometric plasticity in response to dropping temperatures and increased grazing pressure dominates at higher latitudes. Our findings highlight the potential of “organisms-to-ecosystems” modeling approaches based on mechanistic models of plankton biology accounting for physiology, ecology, and trait evolution to explore and explain complex observational data and ultimately improve the predictions of global ocean models.

2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2012 ◽  
Vol 8 (5) ◽  
pp. 1581-1598 ◽  
Author(s):  
V. Mariotti ◽  
L. Bopp ◽  
A. Tagliabue ◽  
M. Kageyama ◽  
D. Swingedouw

Abstract. Marine sediments records suggest large changes in marine productivity during glacial periods, with abrupt variations especially during the Heinrich events. Here, we study the response of marine biogeochemistry to such an event by using a biogeochemical model of the global ocean (PISCES) coupled to an ocean-atmosphere general circulation model (IPSL-CM4). We conduct a 400-yr-long transient simulation under glacial climate conditions with a freshwater forcing of 0.1 Sv applied to the North Atlantic to mimic a Heinrich event, alongside a glacial control simulation. To evaluate our numerical results, we have compiled the available marine productivity records covering Heinrich events. We find that simulated primary productivity and organic carbon export decrease globally (by 16% for both) during a Heinrich event, albeit with large regional variations. In our experiments, the North Atlantic displays a significant decrease, whereas the Southern Ocean shows an increase, in agreement with paleo-productivity reconstructions. In the Equatorial Pacific, the model simulates an increase in organic matter export production but decreased biogenic silica export. This antagonistic behaviour results from changes in relative uptake of carbon and silicic acid by diatoms. Reasonable agreement between model and data for the large-scale response to Heinrich events gives confidence in models used to predict future centennial changes in marine production. In addition, our model allows us to investigate the mechanisms behind the observed changes in the response to Heinrich events.


2021 ◽  
Author(s):  
Nadine Goris ◽  
Jerry Tjiputra ◽  
Are Ohlsen ◽  
Jörg Schwinger ◽  
Siv Lauvset ◽  
...  

<p>As one of the major carbon sinks in the global ocean, the North Atlantic is a key player in mediating and ameliorating the ongoing global warming. Projections of the North Atlantic carbon sink in a high-CO<sub>2</sub> future vary greatly among models, with some showing that a slowdown in carbon uptake has already begun and others predicting that this slowdown will not occur until nearly 2100.</p><p>Discrepancies among models largely originate because of differences in the efficiency of the high-latitude transport of carbon from the surface to the deep ocean. This transport occurs through biological production, deep convection and subsequent transport via the deep western boundary current. For an ensemble of 11 CMIP5-models, we studied the efficiency of this transport and identified two indicators of contemporary model behavior that are highly correlated with a model´s projected future carbon-uptake. The first indicator is the high latitude summer pCO<sub>2</sub><sup>sea</sup>-anomaly of a model, which is tightly linked to winter mixing and nutrient supply, but also to deep convection. The second indicator is the fraction of the anthropogenic carbon-inventory stored below 1000-m depth, indicating how efficient carbon is transported into the deep ocean. By comparing to the observational database, these indicators allow us to better constrain the model ensemble, and demonstrate that the models with more efficient surface to deep transport are best aligned with current observations. These models also show the largest future North Atlantic carbon uptake, which we then conclude is the more plausible future evolution. We further study if the high correlations between our contemporary indicators and a model´s future North Atlantic carbon uptake is also upheld for the next model generation, CMIP6. We hypothesize that this is the case and that our indicators can not only help us to constrain the CMIP6 model ensemble but also inform us about progress made between CMIP5 and CMIP6 in terms of North Atlantic carbon uptake, winter mixing, nutrient supply, deep convection and transport of carbon into the deep ocean.</p>


2008 ◽  
Vol 21 (5) ◽  
pp. 1029-1047 ◽  
Author(s):  
James A. Carton ◽  
Semyon A. Grodsky ◽  
Hailong Liu

Abstract A new monthly uniformly gridded analysis of mixed layer properties based on the World Ocean Atlas 2005 global ocean dataset is used to examine interannual and longer changes in mixed layer properties during the 45-yr period 1960–2004. The analysis reveals substantial variability in the winter–spring depth of the mixed layer in the subtropics and midlatitudes. In the North Pacific an empirical orthogonal function analysis shows a pattern of mixed layer depth variability peaking in the central subtropics. This pattern occurs coincident with intensification of local surface winds and may be responsible for the SST changes associated with the Pacific decadal oscillation. Years with deep winter–spring mixed layers coincide with years in which winter–spring SST is low. In the North Atlantic a pattern of winter–spring mixed layer depth variability occurs that is not so obviously connected to local changes in winds or SST, suggesting that other processes such as advection are more important. Interestingly, at decadal periods the winter–spring mixed layers of both basins show trends, deepening by 10–40 m over the 45-yr period of this analysis. The long-term mixed layer deepening is even stronger (50–100 m) in the North Atlantic subpolar gyre. At tropical latitudes the boreal winter mixed layer varies in phase with the Southern Oscillation index, deepening in the eastern Pacific and shallowing in the western Pacific and eastern Indian Oceans during El Niños. In boreal summer the mixed layer in the Arabian Sea region of the western Indian Ocean varies in response to changes in the strength of the southwest monsoon.


2016 ◽  
Vol 113 (11) ◽  
pp. 2964-2969 ◽  
Author(s):  
Andrew D. Barton ◽  
Andrew J. Irwin ◽  
Zoe V. Finkel ◽  
Charles A. Stock

Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951–2000) and future (2051–2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec−1), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec−1. The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.


2014 ◽  
Vol 142 (2) ◽  
pp. 922-932 ◽  
Author(s):  
Jian Buchan ◽  
Joël J.-M. Hirschi ◽  
Adam T. Blaker ◽  
Bablu Sinha

Abstract Northern Europe experienced consecutive periods of extreme cold weather in the winter of 2009/10 and in late 2010. These periods were characterized by a tripole pattern in North Atlantic sea surface temperature (SST) anomalies and exceptionally negative phases of the North Atlantic Oscillation (NAO). A global ocean–atmosphere general circulation model (OAGCM) is used to investigate the ocean’s role in influencing North Atlantic and European climate. Observed SST anomalies are used to force the atmospheric model and the resultant changes in atmospheric conditions over northern Europe are examined. Different atmospheric responses occur in the winter of 2009/10 and the early winter of 2010. These experiments suggest that North Atlantic SST anomalies did not significantly affect the development of the negative NAO phase in the cold winter of 2009/10. However, in November and December 2010 the large-scale North Atlantic SST anomaly pattern leads to a significant shift in the atmospheric circulation over the North Atlantic toward a NAO negative phase. Therefore, these results indicate that SST anomalies in November/December 2010 were particularly conducive to the development of a negative NAO phase, which culminated in the extreme cold weather conditions experienced over northern Europe in December 2010.


2020 ◽  
Author(s):  
Laura Jackson ◽  
Clotilde Dubois ◽  
Gael Forget ◽  
Keith Haines ◽  
Matt Harrison ◽  
...  

<p>The observational network around the North Atlantic has improved significantly over the last few decades with the advent of Argo and satellite observations, and the more recent efforts to monitor the Atlantic Meridional Overturning Circulation (AMOC) using arrays such as RAPID and OSNAP. These have shown decadal timescale changes across the North Atlantic including in heat content, heat transport and the circulation. </p><p>However there are still significant gaps in the observational coverage, and significant uncertainties around some observational products. Ocean reanalyses integrate the observations with a dynamically consistent ocean model and are potentially tools that can be used to understand the observed changes. However the suitability of the reanalyses for the task must also be assessed.<br>We use an ensemble of global ocean reanalyses in comparison with observations in order to examine the mean state and interannual-decadal variability of the North Atlantic ocean since 1993. We assess how well the reanalyses are able to capture different processes and whether any understanding can be inferred. In particular we look at ocean heat content, transports, the AMOC and gyre strengths, water masses and convection. </p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document