scholarly journals The mean state and variability of the North Atlantic circulation: a perspective from ocean reanalyses

Author(s):  
Laura Jackson ◽  
Clotilde Dubois ◽  
Gael Forget ◽  
Keith Haines ◽  
Matt Harrison ◽  
...  

<p>The observational network around the North Atlantic has improved significantly over the last few decades with the advent of Argo and satellite observations, and the more recent efforts to monitor the Atlantic Meridional Overturning Circulation (AMOC) using arrays such as RAPID and OSNAP. These have shown decadal timescale changes across the North Atlantic including in heat content, heat transport and the circulation. </p><p>However there are still significant gaps in the observational coverage, and significant uncertainties around some observational products. Ocean reanalyses integrate the observations with a dynamically consistent ocean model and are potentially tools that can be used to understand the observed changes. However the suitability of the reanalyses for the task must also be assessed.<br>We use an ensemble of global ocean reanalyses in comparison with observations in order to examine the mean state and interannual-decadal variability of the North Atlantic ocean since 1993. We assess how well the reanalyses are able to capture different processes and whether any understanding can be inferred. In particular we look at ocean heat content, transports, the AMOC and gyre strengths, water masses and convection. </p><p> </p>

2019 ◽  
Vol 124 (12) ◽  
pp. 9141-9170 ◽  
Author(s):  
L. C. Jackson ◽  
C. Dubois ◽  
G. Forget ◽  
K. Haines ◽  
M. Harrison ◽  
...  

2016 ◽  
Vol 29 (15) ◽  
pp. 5417-5430 ◽  
Author(s):  
Chunxue Yang ◽  
Simona Masina ◽  
Alessio Bellucci ◽  
Andrea Storto

Abstract The rapid warming in the mid-1990s in the North Atlantic Ocean is investigated by means of an eddy-permitting ocean reanalysis. Both the mean state and variability, including the mid-1990s warming event, are well captured by the reanalysis. An ocean heat budget applied to the subpolar gyre (SPG) region (50°–66°N, 60°–10°W) shows that the 1995–99 rapid warming is primarily dictated by changes in the heat transport convergence term while the surface heat fluxes appear to play a minor role. The mean negative temperature increment suggests a warm bias in the model and data assimilation corrects the mean state of the model, but it is not crucial to reconstruct the time variability of the upper-ocean temperature. The decomposition of the heat transport across the southern edge of the SPG into time-mean and time-varying components shows that the SPG warming is mainly associated with both the anomalous advection of mean temperature and the mean advection of temperature anomalies across the 50°N zonal section. The relative contributions of the Atlantic meridional overturning circulation (AMOC) and gyre circulation to the heat transport are also analyzed. It is shown that both the overturning and gyre components are relevant to the mid-1990s warming. In particular, the fast adjustment of the barotropic circulation response to the NAO drives the anomalous transport of mean temperature at the subtropical/subpolar boundary, while the slowly evolving AMOC feeds the large-scale advection of thermal anomalies across 50°N. The persistently positive phase of the NAO during the years prior to the rapid warming likely favored the cross-gyre heat transfer and the following SPG warming.


2011 ◽  
Vol 24 (23) ◽  
pp. 6054-6076 ◽  
Author(s):  
Haiyan Teng ◽  
Grant Branstator ◽  
Gerald A. Meehl

Abstract Predictability of the Atlantic meridional overturning circulation (AMOC) and associated oceanic and atmospheric fields on decadal time scales in the Community Climate System Model, version 3 (CCSM3) at T42 resolution is quantified with a 700-yr control run and two 40-member “perfect model” climate change experiments. After taking into account both the mean and spread about the mean of the forecast distributions and allowing for the possibility of time-evolving modes, the natural variability of the AMOC is found to be predictable for about a decade; beyond that range the forced predictability resulting from greenhouse gas forcing becomes dominant. The upper 500-m temperature in the North Atlantic is even more predictable than the AMOC by several years. This predictability is associated with subsurface and sea surface temperature (SST) anomalies that propagate in an anticlockwise direction along the subpolar gyre and tend to be prominent during the 10 yr following peaks in the amplitude of AMOC anomalies. Predictability in the North Atlantic SST mainly resides in the ensemble mean signals after three to four forecast years. Analysis suggests that in the CCSM3 the subpolar gyre SST anomalies associated with the AMOC variability can influence the atmosphere and produce surface climate predictability that goes beyond the ENSO time scale. However, the resulting initial-value predictability in the atmosphere is very weak.


2017 ◽  
Vol 30 (2) ◽  
pp. 477-498 ◽  
Author(s):  
Florian Sévellec ◽  
Alexey V. Fedorov

This study investigates the excitation of decadal variability and predictability of the ocean climate state in the North Atlantic. Specifically, initial linear optimal perturbations (LOPs) in temperature and salinity that vary with depth, longitude, and latitude are computed, and the maximum impact on the ocean of these perturbations is evaluated in a realistic ocean general circulation model. The computations of the LOPs involve a maximization procedure based on Lagrange multipliers in a nonautonomous context. To assess the impact of these perturbations four different measures of the North Atlantic Ocean state are used: meridional volume and heat transports (MVT and MHT) and spatially averaged sea surface temperature (SST) and ocean heat content (OHC). It is shown that these metrics are dramatically different with regard to predictability. Whereas OHC and SST can be efficiently modified only by basin-scale anomalies, MVT and MHT are also strongly affected by smaller-scale perturbations. This suggests that instantaneous or even annual-mean values of MVT and MHT are less predictable than SST and OHC. Only when averaged over several decades do the former two metrics have predictability comparable to the latter two, which highlights the need for long-term observations of the Atlantic meridional overturning circulation in order to accumulate climatically relevant data. This study also suggests that initial errors in ocean temperature of a few millikelvins, encompassing both the upper and deep ocean, can lead to ~0.1-K errors in the predictions of North Atlantic sea surface temperature on interannual time scales. This transient error growth peaks for SST and OHC after about 6 and 10 years, respectively, implying a potential predictability barrier.


Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Sandro F. Veiga ◽  
Emanuel Giarolla ◽  
Paulo Nobre ◽  
Carlos A. Nobre

Important features of the Atlantic meridional mode (AMM) are not fully understood. We still do not know what determines its dominant decadal variability or the complex physical processes that sustain it. Using reanalysis datasets, we investigated the influence of the North Atlantic Ocean variability on the dominant decadal periodicity that characterizes the AMM. Statistical analyses demonstrated that the correlation between the sea surface temperature decadal variability in the Atlantic Ocean and the AMM time series characterizes the Atlantic multidecadal oscillation (AMO). This corroborates previous studies that demonstrated that the AMO precedes the AMM. A causal inference with a newly developed rigorous and quantitative causality analysis indicates that the AMO causes the AMM. To further understand the influence of the subsurface ocean on the AMM, the relationship between the ocean heat content (0–300 m) decadal variability and AMM was analyzed. The results show that although there is a significant zero-lag correlation between the ocean heat content in some regions of the North Atlantic (south of Greenland and in the eastern part of the North Atlantic) and the AMM, their cause-effect relationship on decadal time scales is unlikely. By correlating the AMO with the ocean heat content (0–300 m) decadal variability, the former precedes the latter; however, the causality analysis shows that the ocean heat content variability drives the AMO, corroborating several studies that point out the dominant role of the ocean heat transport convergence on AMO.


2015 ◽  
Vol 28 (22) ◽  
pp. 8907-8922 ◽  
Author(s):  
Andreas Born ◽  
Juliette Mignot ◽  
Thomas F. Stocker

Abstract Decadal climate variability in the North Atlantic has received increased attention in recent years, because modeling results suggest predictability of heat content and circulation indices several years ahead. However, determining the applicability of these results in the real world is challenging because of an incomplete understanding of the underlying mechanisms. Here, the authors show that recent attempts to reconstruct the decadal variations in one of the dominant circulation systems of the region, the subpolar gyre (SPG), are not always consistent. A coherent picture is partly recovered by a simple conceptual model solely forced by reanalyzed surface air temperatures. This confirms that surface heat flux indeed plays a leading role for this type of variability, as has been suggested in previous studies. The results further suggest that large variations in the SPG correspond to the crossing of a bifurcation point that is predicted from idealized experiments and an analytical solution of the model used herein. Performance of this conceptual model is tested against a statistical stochastic model. Hysteresis and the existence of two stable modes of the SPG circulation shape its response to forcing by atmospheric temperatures. The identification of the essential dynamics and the reduction to a minimal model of SPG variability provide a quantifiable basis and a framework for future studies on decadal climate variability and predictability.


2014 ◽  
Vol 27 (16) ◽  
pp. 6325-6342 ◽  
Author(s):  
Simon F. B. Tett ◽  
Toby J. Sherwin ◽  
Amrita Shravat ◽  
Oliver Browne

Abstract Volume transports from six ocean reanalyses are compared with four sets of in situ observations: across the Greenland–Scotland ridge (GSR), in the Labrador Sea boundary current, in the deep western boundary current at 43°N, and in the Atlantic meridional overturning circulation (AMOC) at 26°N in the North Atlantic. The higher-resolution reanalyses (on the order of ¼° × ¼°) are better at reproducing the circulation pattern in the subpolar gyre than those with lower resolution (on the order of 1°). Simple Ocean Data Assimilation (SODA) and Estimating the Circulation and Climate of the Ocean (ECCO)–Jet Propulsion Laboratory (JPL) produce transports at 26°N that are close to those observed [17 Sv (1 Sv ≡ 106 m3 s−1)]. ECCO, version 2, and SODA produce northward transports across the GSR (observed transport of 8.2 Sv) that are 22% and 29% too big, respectively. By contrast, the low-resolution reanalyses have transports that are either too small [by 31% for ECCO-JPL and 49% for Ocean Reanalysis, system 3 (ORA-S3)] or much too large [Decadal Prediction System (DePreSys)]. SODA had the best simulations of mixed layer depth and with two coarse grid long-term reanalyses (DePreSys and ORA-S3) is used to examine changes in North Atlantic circulation from 1960 to 2008. Its results suggest that the AMOC increased by about 20% at 26°N while transport across the GSR hardly altered. The other (less reliable) long-term reanalyses also had small changes across the GSR but changes of +10% and −20%, respectively, at 26°N. Thus, it appears that changes in the overturning circulation at 26°N are decoupled from the flow across the GSR. It is recommended that transport observations should not be assimilated in ocean reanalyses but used for validation instead.


2015 ◽  
Vol 42 (8) ◽  
pp. 2901-2909 ◽  
Author(s):  
Sirpa Häkkinen ◽  
Peter B. Rhines ◽  
Denise L. Worthen

2014 ◽  
Vol 27 (11) ◽  
pp. 4052-4069 ◽  
Author(s):  
Xiaoming Zhai ◽  
Helen L. Johnson ◽  
David P. Marshall

Abstract The response of an idealized Atlantic Ocean to wind and thermohaline forcing associated with the North Atlantic Oscillation (NAO) is investigated both analytically and numerically in the framework of a reduced-gravity model. The NAO-related wind forcing is found to drive a time-dependent “leaky” gyre circulation that integrates basinwide stochastic wind Ekman pumping and initiates low-frequency variability along the western boundary. This is subsequently communicated, together with the stochastic variability induced by thermohaline forcing at high latitudes, to the remainder of the Atlantic via boundary and Rossby waves. At low frequencies, the basinwide ocean heat content changes owing to NAO wind forcing and thermohaline forcing are found to oppose each other. The model further suggests that the recently reported opposing changes of the meridional overturning circulation in the Atlantic subtropical and subpolar gyres between 1950–70 and 1980–2000 may be a generic feature caused by interplay between the NAO wind and thermohaline forcing.


2008 ◽  
Vol 21 (24) ◽  
pp. 6599-6615 ◽  
Author(s):  
Arne Biastoch ◽  
Claus W. Böning ◽  
Julia Getzlaff ◽  
Jean-Marc Molines ◽  
Gurvan Madec

Abstract The causes and characteristics of interannual–decadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global ocean–ice models (ORCA), varying in resolution from medium to eddy resolving (½°–1/12°), using various forcing configurations built on bulk formulations invoking atmospheric reanalysis products. Comparison of the model hindcasts indicates similar MOC variability characteristics on time scales up to a decade; both model architectures also simulate an upward trend in MOC strength between the early 1970s and mid-1990s. The causes of the MOC changes are examined by perturbation experiments aimed selectively at the response to individual forcing components. The solutions emphasize an inherently linear character of the midlatitude MOC variability by demonstrating that the anomalies of a (non–eddy resolving) hindcast simulation can be understood as a superposition of decadal and longer-term signals originating from thermohaline forcing variability, and a higher-frequency wind-driven variability. The thermohaline MOC signal is linked to the variability in subarctic deep-water formation, and rapidly progressing to the tropical Atlantic. However, throughout the subtropical and midlatitude North Atlantic, this signal is effectively masked by stronger MOC variability related to wind forcing and, especially north of 30°–35°N, by internally induced (eddy) fluctuations.


Sign in / Sign up

Export Citation Format

Share Document