scholarly journals Low Temperature and Chloramphenicol Induction of Respiratory Deficiency in a Cold-Sensitive Mutant of Saccharomyces cerevisiae

1970 ◽  
Vol 67 (1) ◽  
pp. 52-58 ◽  
Author(s):  
P. O. Weislogel ◽  
R. A. Butow
1996 ◽  
Vol 109 (9) ◽  
pp. 2311-2318 ◽  
Author(s):  
N. Nakashima ◽  
N. Hayashi ◽  
E. Noguchi ◽  
T. Nishimoto

In order to identify a protein interacting with RCC1, a guanine nucleotide-exchange factor for the nuclear GTPase Ran, we isolated a series of cold-sensitive suppressors of mtr1-2, a temperature-sensitive mutant of the Saccharomyces cerevisiae RCC1 homologue. One of the isolated suppressor mutants was mutated in the putative GTPase Gtr1p, being designated as gtr1-11. It also suppressed other alleles of mtr1-2, srm1-1 and prp20-1 in contrast to overexpression of the S. cerevisiae Ran/TC4 homologue Gsp1p, previously reported to suppress prp20-1, but not mtr1-2 or srm1-1. Furthermore, gtr1-11 suppressed the rna1-1, temperature-sensitive mutant of the Gsp1p GTPase-activating protein, but not the srp1-31, temperature-sensitive mutant of the S. cerevisiae importin alpha homologue. mtr1-2, srm1-1 and prp20-1 were also suppressed by overexpression of the mutated Gtr1p, Gtr1-11p. In summary, Gtr1p that was localized in the cytoplasm by immunofluoresence staining was suggested to function as a negative regulator for the Ran/TC4 GTPase cycle.


1978 ◽  
Vol 4 (2) ◽  
pp. 83-86 ◽  
Author(s):  
Terence W. Spithill ◽  
K. J. English ◽  
Phillip Nagley ◽  
Anthony W. Linnane

Genetics ◽  
1974 ◽  
Vol 77 (4) ◽  
pp. 651-659
Author(s):  
Arjun Singh ◽  
T R Manney

ABSTRACT A large number of genes control growth of the yeast Saccharomyces cerevisiae at low temperatures (< 10°). Approximately 47 percent of the mutants selected for inability to grow at 4-5°C show increased sensitivity to cycloheximide. In 3 of 4 cases tested, supersensitivity to cycloheximide and inability to grow at the low temperature segregate together and thus appear to be effects of the same mutation. Since many cold-sensitive mutants of bacteria have been found to have altered ribosomes and since cycloheximide resistance in yeast can be caused by ribosomal changes, this suggests that the mutants having low-temperature-sensitive growth may be defective in ribosome-assembly processes at the low temperatures. Two of the lts loci, lts1 and lts3 have been located on chromosome VII and another two, lts4 and lts10 on chromosome IV. A mutation, cyh10, conferring cycloheximide resistance, but not cold sensitivity, has been located close to the centromere on chromosome II.


1991 ◽  
Vol 11 (11) ◽  
pp. 5767-5780
Author(s):  
A M Healy ◽  
S Zolnierowicz ◽  
A E Stapleton ◽  
M Goebl ◽  
A A DePaoli-Roach ◽  
...  

Microscopic screening of a collection of cold-sensitive mutants of Saccharomyces cerevisiae led to the identification of a new gene, CDC55, which appears to be involved in the morphogenetic events of the cell cycle. CDC55 maps between CDC43 and CHC1 on the left arm of chromosome VII. At restrictive temperature, the original cdc55 mutant produces abnormally elongated buds and displays a delay or partial block of septation and/or cell separation. A cdc55 deletion mutant displays a cold-sensitive phenotype like that of the original isolate. Sequencing of CDC55 revealed that it encodes a protein of about 60 kDa, as confirmed by Western immunoblots using Cdc55p-specific antibodies. This protein has greater than 50% sequence identity to the B subunits of rabbit skeletal muscle type 2A protein phosphatase; the latter sequences were obtained by analysis of peptides derived from the purified protein, a polymerase chain reaction product, and cDNA clones. An extragenic suppressor of the cdc55 mutation lies in BEM2, a gene previously identified on the basis of an apparent role in bud emergence.


2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Bruna Inez Carvalho Figueiredo ◽  
Margarete Alice Fontes Saraiva ◽  
Paloma Patrick de Souza Pimenta ◽  
Miriam Conceição de Souza Testasicca ◽  
Geraldo Magela Santos Sampaio ◽  
...  

ABSTRACT The development of hybrids has been an effective approach to generate novel yeast strains with optimal technological profile for use in beer production. This study describes the generation of a new yeast strain for lager beer production by direct mating between two Saccharomyces cerevisiae strains isolated from cachaça distilleries: one that was strongly flocculent, and the other with higher production of acetate esters. The first step in this procedure was to analyze the sporulation ability and reproductive cycle of strains belonging to a specific collection of yeasts isolated from cachaça fermentation vats. Most strains showed high rates of sporulation, spore viability, and homothallic behavior. In order to obtain new yeast strains with desirable properties useful for lager beer production, we compare haploid-to-haploid and diploid-to-diploid mating procedures. Moreover, an assessment of parental phenotype traits showed that the segregant diploid C2-1d generated from a diploid-to-diploid mating experiment showed good fermentation performance at low temperature, high flocculation capacity, and desirable production of acetate esters that was significantly better than that of one type lager strain. Therefore, strain C2-1d might be an important candidate for the production of lager beer, with distinct fruit traces and originating using a non-genetically modified organism (GMO) approach. IMPORTANCE Recent work has suggested the utilization of hybridization techniques for the generation of novel non-genetically modified brewing yeast strains with combined properties not commonly found in a unique yeast strain. We have observed remarkable traits, especially low temperature tolerance, maltotriose utilization, flocculation ability, and production of volatile aroma compounds, among a collection of Saccharomyces cerevisiae strains isolated from cachaça distilleries, which allow their utilization in the production of beer. The significance of our research is in the use of breeding/hybridization techniques to generate yeast strains that would be appropriate for producing new lager beers by exploring the capacity of cachaça yeast strains to flocculate and to ferment maltose at low temperature, with the concomitant production of flavoring compounds.


1978 ◽  
Vol 162 (1) ◽  
pp. 9-16 ◽  
Author(s):  
G. Kellenberger-Gujer ◽  
A. J. Podhajska ◽  
L. Caro

Sign in / Sign up

Export Citation Format

Share Document