scholarly journals Involvement of GTP-binding proteins in actin polymerization in human neutrophils.

1990 ◽  
Vol 87 (8) ◽  
pp. 2921-2925 ◽  
Author(s):  
T. Bengtsson ◽  
E. Sarndahl ◽  
O. Stendahl ◽  
T. Andersson
2000 ◽  
Vol 347 (1) ◽  
pp. 183-192 ◽  
Author(s):  
Juan A. ROSADO ◽  
Stewart O. SAGE

We have investigated the mechanism of Ca2+ entry into fura-2-loaded human platelets by preventing the prenylation of proteins such as small GTP-binding proteins. The farnesylcysteine analogues farnesylthioacetic acid (FTA) and N-acetyl-S-geranylgeranyl-L-cysteine (AGGC), which are inhibitors of the methylation of prenylated and geranylgeranylated proteins respectively, significantly decreased thrombin-evoked increases in intracellular free Ca2+ concentration ([Ca2+]i) in the presence, but not in the absence, of external Ca2+, suggesting a relatively selective inhibition of Ca2+ entry over internal release. Both these compounds and N-acetyl-S-farnesyl-L-cysteine, which had similar effects to those of FTA, also decreased Ca2+ entry evoked by the depletion of intracellular Ca2+ stores with thapsigargin. The inactive control N-acetyl-S-geranyl-L-cysteine was without effect. Patulin, an inhibitor of prenylation that is inert with respect to methyltransferases, also decreased store-regulated Ca2+ entry. Cytochalasin D, an inhibitor of actin polymerization, significantly decreased store-regulated Ca2+ entry in a time-dependent manner. Both cytochalasin D and the farnesylcysteine analogues FTA and AGGC inhibited actin polymerization; however, when evoking the same extent of decrease in actin filament formation, FTA and AGGC showed greater inhibitory effects on Ca2+ entry, indicating a cytoskeleton-independent component in the regulation of Ca2+ entry by small GTP-binding-protein. These findings suggest that prenylated proteins such as small GTP-binding proteins are involved in store-regulated Ca2+ entry through actin cytoskeleton-dependent and cytoskeleton-independent mechanisms in human platelets.


1994 ◽  
Vol 126 (4) ◽  
pp. 1005-1015 ◽  
Author(s):  
J C Norman ◽  
L S Price ◽  
A J Ridley ◽  
A Hall ◽  
A Koffer

Rat peritoneal mast cells, both intact and permeabilized, have been used widely as model secretory cells. GTP-binding proteins and calcium play a major role in controlling their secretory response. Here we have examined changes in the organization of actin filaments in intact mast cells after activation by compound 48/80, and in permeabilized cells after direct activation of GTP-binding proteins by GTP-gamma-S. In both cases, a centripetal redistribution of cellular F-actin was observed: the content of F-actin was reduced in the cortical region and increased in the cell interior. The overall F-actin content was increased. Using permeabilized cells, we show that AIF4-, an activator of heterotrimeric G proteins, induces the disassembly of F-actin at the cortex, while the appearance of actin filaments in the interior of the cell is dependent on two small GTPases, rho and rac. Rho was found to be responsible for de novo actin polymerization, presumably from a membrane-bound monomeric pool, while rac was required for an entrapment of the released cortical filaments. Thus, a heterotrimeric G-protein and the small GTPases, rho and rac, participate in affecting the changes in the actin cytoskeleton observed after activation of mast cells.


1996 ◽  
Vol 315 (3) ◽  
pp. 775-779 ◽  
Author(s):  
Gary M. BOKOCH ◽  
Chris J. VLAHOS ◽  
Yan WANG ◽  
Ulla G. KNAUS ◽  
Alexis E. TRAYNOR-KAPLAN

The Rac GTP-binding proteins are members of the Rho family and regulate growth factor-stimulated actin assembly in a variety of cells. The formation of phosphorylated inositol lipids has been implicated in control of the processes initiating and regulating such actin polymerization. Associations of Rho family GTP-binding proteins with enzymes involved in lipid metabolism have been described. Here we demonstrate a direct and specific interaction of Rac proteins with phosphatidylinositol (PI) 3-kinase. This interaction is dependent upon Rac being in a GTP-bound state and requires an intact Rac effector domain. In contrast, direct binding of RhoA to PI 3-kinase could not be detected. Rac–GTP also bound to PI 3-kinase in Swiss 3T3 fibroblast and human neutrophil lysates, and increased PI 3-kinase activity became associated with Rac–GTP in platelet-derived growth factor-stimulated cells. Interaction of Rac–GTP with PI 3-kinase in vitro stimulated the activity of the enzyme by 2–9-fold. A specific interaction of active Rac with PI 3-kinase might be important in regulation of the actin cytoskeleton.


1990 ◽  
Vol 1054 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Leili Khachatrian ◽  
Jeffrey B. Rubins ◽  
Eric C. Manning ◽  
David Dexter ◽  
Alfred I. Tauber ◽  
...  

1999 ◽  
Vol 82 (09) ◽  
pp. 1177-1181 ◽  
Author(s):  
Hubert de Leeuw ◽  
Pauline Wijers-Koster ◽  
Jan van Mourik ◽  
Jan Voorberg

SummaryIn endothelial cells von Willebrand factor (vWF) and P-selectin are stored in dense granules, so-called Weibel-Palade bodies. Upon stimulation of endothelial cells with a variety of agents including thrombin, these organelles fuse with the plasma membrane and release their content. Small GTP-binding proteins have been shown to control release from intracellular storage pools in a number of cells. In this study we have investigated whether small GTP-binding proteins are associated with Weibel-Palade bodies. We isolated Weibel-Palade bodies by centrifugation on two consecutive density gradients of Percoll. The dense fraction in which these subcellular organelles were highly enriched, was analysed by SDS-PAGE followed by GTP overlay. A distinct band with an apparent molecular weight of 28,000 was observed. Two-dimensional gel electrophoresis followed by GTP overlay revealed the presence of a single small GTP-binding protein with an isoelectric point of 7.1. A monoclonal antibody directed against RalA showed reactivity with the small GTP-binding protein present in subcellular fractions that contain Weibel-Palade bodies. The small GTPase RalA was previously identified on dense granules of platelets and on synaptic vesicles in nerve terminals. Our observations suggest that RalA serves a role in regulated exocytosis of Weibel-Palade bodies in endothelial cells.


1998 ◽  
Vol 79 (04) ◽  
pp. 832-836 ◽  
Author(s):  
Thomas Fischer ◽  
Christina Duffy ◽  
Gilbert White

SummaryPlatelet membrane glycoproteins (GP) IIb/IIIa and rap1b, a 21 kDa GTP binding protein, associate with the triton-insoluble, activation-dependent platelet cytoskeleton with similar rates and divalent cation requirement. To examine the possibility that GPIIb/IIIa was required for rap1b association with the cytoskeleton, experiments were performed to determine if the two proteins were linked under various conditions. Chromatography of lysates from resting platelets on Sephacryl S-300 showed that GPIIb/IIIa and rap1b were well separated and distinct proteins. Immunoprecipitation of GPIIb/IIIa from lysates of resting platelets did not produce rap1b or other low molecular weight GTP binding proteins and immunoprecipitation of rap1b from lysates of resting platelets did not produce GPIIb/IIIa. Finally, rap1b was associated with the activation-dependent cytoskeleton of platelets from a patient with Glanzmann’s thrombasthenia who lacks surface expressed glycoproteins IIb and IIIa. Based on these findings, we conclude that no association between GPIIb/IIIa and rap1b is found in resting platelets and that rap1b association with the activation-dependent cytoskeleton is at least partly independent of GPIIb/IIIa.


Sign in / Sign up

Export Citation Format

Share Document