scholarly journals Molecular evolution of the myosin family: relationships derived from comparisons of amino acid sequences.

1993 ◽  
Vol 90 (2) ◽  
pp. 659-663 ◽  
Author(s):  
H. V. Goodson ◽  
J. A. Spudich
2003 ◽  
Vol 185 (21) ◽  
pp. 6269-6277 ◽  
Author(s):  
Kwan Soo Ko ◽  
Seong Karp Hong ◽  
Hae Kyung Lee ◽  
Mi-Yeoun Park ◽  
Yoon-Hoh Kook

ABSTRACT The molecular evolution of dotA, which is related to the virulence of Legionella pneumophila, was investigated by comparing the sequences of 15 reference strains (serogroups 1 to 15). It was found that dotA has a complex mosaic structure. The whole dotA gene of Legionella pneumophila subsp. pneumophila serogroups 2, 6, and 12 has been transferred from Legionella pneumophila subsp. fraseri. A discrepancy was found between the trees inferred from the nucleotide and deduced amino acid sequences of dotA, which suggests that multiple hits, resulting in synonymous substitutions, have occurred. Gene phylogenies inferred from three different segments (the 5′-end region, the central, large periplasmic domain, and the 3′-end region) showed impressively dissimilar topologies. This was concordant with the sequence polymorphisms, indicating that each region has experienced an independent evolutionary history, and was evident even within the same domain of each strain. For example, the PP2 domain was found to have a heterogeneous structure, which led us hypothesize that the dotA gene of L. pneumophila may have originated from two or more different sources. Comparisons of synonymous and nonsynonymous substitutions demonstrated that the PP2 domain has been under strong selective pressure with respect to amino acid change. Split decomposition analysis also supported the intragenic recombination of dotA. Multiple recombinational exchange within the dotA gene, encoding an integral cytoplasmic membrane protein that is secreted, probably provided increased fitness in certain environmental niches, such as within a particular biofilm community or species of amoebae.


1992 ◽  
Vol 70 (4) ◽  
pp. 715-723 ◽  
Author(s):  
J. J. Pasternak ◽  
B. R. Glick

The molecular evolution of the amino acid sequences of the mature small and large subunits of ribulose-1,5-bisphosphate carboxylase/oxygense (Rubisco) was determined. The dataset for each subunit consisted of sequences from 39 different taxa of which 22 are represented with sequence information for both subunits. Phylogenetic trees were reconstructed using distance matrix, parsimony and simultaneous alignment and phylogeny methods. For the small subunit, the latter two methods produced similar trees that differed from the topology of the distance matrix tree. For the large subunit, each of the three tree-building methods yielded a distinct tree. Except for the distance matrix small subunit tree, the tree-building methods produced topologies for the small and large subunit sequences from the nonflowering plant taxa that, for the most part, agree with current taxonomic schemes. With the full datasets, the lack of consistency both among the various trees and with conventional taxonomic relationships was most evident with the Rubisco sequences from angiosperms. It is unlikely that current tree-building methods will be able to reconstruct an unambiguous molecular evolution of either of the Rubisco subunits. Molecular trees, regardless of methodology, showed similar topologies for the small and large subunits from the 22 taxa from which both subunits have been sequenced, indicating that the subunits have changed to the same extent over time. In this case, similar trees were formed because only 4 of the 22 taxa were from dicots. Key words: ribulose-1,5-bisphosphate carboxylase/oxygenase, amino acid sequence, molecular evolution, phyletic trees.


2005 ◽  
Vol 52 (2) ◽  
pp. 507-513 ◽  
Author(s):  
Michał Piast ◽  
Irena Kustrzeba-Wójcicka ◽  
Małgorzata Matusiewicz ◽  
Teresa Banaś

Enolase (EC 4.2.1.11) is an enzyme of the glycolytic pathway catalyzing the dehydratation reaction of 2-phosphoglycerate. In vertebrates the enzyme exists in three isoforms: alpha, beta and gamma. The amino-acid and nucleotide sequences deposited in the GenBank and SwissProt databases were subjected to analysis using the following bioinformatic programs: ClustalX, GeneDoc, MEGA2 and S.I.F.T. (sort intolerant from tolerant). Phylogenetic trees of enolases created with the use of the MEGA2 program show evolutionary relationships and functional diversity of the three isoforms of enolase in vertebrates. On the basis of calculations and the phylogenetic trees it can be concluded that vertebrate enolase has evolved according to the "birth and death" model of evolution. An analysis of amino acid sequences of enolases: non-neuronal (NNE), neuron specific (NSE) and muscle specific (MSE) using the S.I.F.T. program indicated non-uniform number of possible substitutions. Tolerated substitutions occur most frequently in alpha-enolase, while the lowest number of substitutions has accumulated in gamma-enolase, which may suggest that it is the most recently evolved isoenzyme of enolase in vertebrates.


Genetics ◽  
1986 ◽  
Vol 114 (1) ◽  
pp. 315-332
Author(s):  
Robin C Hightower ◽  
Richard B Meagher

ABSTRACT We have investigated the molecular evolution of plant and nonplant actin genes comparing nucleotide and amino acid sequences of 20 actin genes. Nucleotide changes resulting in amino acid substitutions (replacement substitutions) ranged from 3-7% for all pairwise comparisons of animal actin genes with the following exceptions. Comparisons between higher animal muscle actin gene sequences and comparisons between higher animal cytoplasmic actin gene sequences indicated <3% divergence. Comparisons between plant and nonplant actin genes revealed, with two exceptions, 11-15% replacement substitution. In the analysis of plant actins, replacement substitution between soybean actin genes SAc1, SAc3, SAc4 and maize actin gene MAc1 ranged from 8-10%, whereas these members within the soybean actin gene family ranged from 6-9% replacement substitution. The rate of sequence divergence of plant actin sequences appears to be similar to that observed for animal actins. Furthermore, these and other data suggest that the plant actin gene family is ancient and that the families of soybean and maize actin genes have diverged from a single common ancestral plant actin gene that originated long before the divergence of monocots and dicots. The soybean actin multigene family encodes at least three classes of actin. These classes each contain a pair of actin genes that have been designated kappa (SAc1, SAc6), lambda (SAc2, SAc4) and mu (SAc3, SAc7). The three classes of soybean actin are more divergent in nucleotide sequence from one another than higher animal cytoplasmic actin is divergent from muscle actin. The location and distribution of amino acid changes were compared between actin proteins from all sources. A comparison of the hydropathy of all actin sequences, except from Oxytricha, indicated a strong similarity in hydropathic character between all plant and nonplant actins despite the greater number of replacement substitutions in plant actins. These protein sequence comparisons are discussed with respect to the demonstrated and implicated roles of actin in plants and animals, as well as the tissue-specific expression of actin.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 488
Author(s):  
Kaiyue Duan ◽  
Jingzhuang Zhao ◽  
Guangming Ren ◽  
Yizhi Shao ◽  
Tongyan Lu ◽  
...  

Passive virus surveillance was performed in twenty-nine salmon and trout farms from seven provinces and districts in China during the period 2017–2020. A total of 25 infectious pancreatic necrosis virus (IPNV) isolates were obtained, mainly from rainbow trout (Oncorhynchus mykiss). The molecular evolution of these Chinese IPNV isolates and the previously reported Chinese IPNV strains ChRtm213 and WZ2016 was analyzed, based on their VP2 gene coding region sequences (CDS). All 27 Chinese IPNV isolates clustered within genogroups I and V, with 24 of the IPNV isolates belonging to genogroup I (including ChRtm213 and WZ2016), and only three isolates clustering in genogroup V. The Chinese genogroup I IPNV isolates lacked diversity, composing six haplotypes with 41 polymorphic sites, and the identity of nucleotide and amino acid sequences among the entire VP2 gene CDS from these isolates was 97.44%–100% and 98.19%–100%, respectively. Divergence time analyses revealed that the Chinese genogroup I IPNV isolates likely diverged from Japanese IPNV isolates in 1985 (95% highest posterior density (HPD), 1965–1997), and diverged again in 2006 (95% HPD, 1996–2013) in China. Each of the three Chinese genogroup V IPNV isolates has a unique VP2 gene CDS, with a total of 21 polymorphic sites; the identity of nucleotide and amino acid sequences among all VP2 gene CDS from these isolates was 98.5%–99.5% and 98.6%–99.0%, respectively. The data demonstrate that genogroups I and V are more likely the currently prevalent Chinese IPNV genotypes.


1993 ◽  
Vol 69 (04) ◽  
pp. 351-360 ◽  
Author(s):  
Masahiro Murakawa ◽  
Takashi Okamura ◽  
Takumi Kamura ◽  
Tsunefumi Shibuya ◽  
Mine Harada ◽  
...  

SummaryThe partial amino acid sequences of fibrinogen Aα-chains from five mammalian species have been inferred by means of the polymerase chain reaction (PCR). From the genomic DNA of the rhesus monkey, pig, dog, mouse and Syrian hamster, the DNA fragments coding for α-C domains in the Aα-chains were amplified and sequenced. In all species examined, four cysteine residues were always conserved at the homologous positions. The carboxy- and amino-terminal portions of the α-C domains showed a considerable homology among the species. However, the sizes of the middle portions, which corresponded to the internal repeat structures, showed an apparent variability because of several insertions and/or deletions. In the rhesus monkey, pig, mouse and Syrian hamster, 13 amino acid tandem repeats fundamentally similar to those in humans and the rat were identified. In the dog, however, tandem repeats were found to consist of 18 amino acids, suggesting an independent multiplication of the canine repeats. The sites of the α-chain cross-linking acceptor and α2-plasmin inhibitor cross-linking donor were not always evolutionally conserved. The arginyl-glycyl-aspartic acid (RGD) sequence was not found in the amplified region of either the rhesus monkey or the pig. In the canine α-C domain, two RGD sequences were identified at the homologous positions to both rat and human RGD S. In the Syrian hamster, a single RGD sequence was found at the same position to that of the rat. Triplication of the RGD sequences was seen in the murine fibrinogen α-C domain around the homologous site to the rat RGDS sequence. These findings are of some interest from the point of view of structure-function and evolutionary relationships in the mammalian fibrinogen Aα-chains.


Sign in / Sign up

Export Citation Format

Share Document