scholarly journals An essential component of a C-terminal domain phosphatase that interacts with transcription factor IIF in Saccharomyces cerevisiae

1997 ◽  
Vol 94 (26) ◽  
pp. 14300-14305 ◽  
Author(s):  
J. Archambault ◽  
R. S. Chambers ◽  
M. S. Kobor ◽  
Y. Ho ◽  
M. Cartier ◽  
...  
Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 511-521 ◽  
Author(s):  
Dorina Avram ◽  
Alan T Bakalinsky

Abstract An ssu2 mutation in Sacccharomyces cermisiae, previously shown to cause sulfite sensitivity, was found to be allelic to GRR1, a gene previously implicated in glucose repression. The suppressor rgt1, which suppresses the growth defects of grr1 strains on glucose, did not fully suppress the sensitivity on glucose or nonglucose carbon sources, indicating that it is not strictly linked to a defect in glucose metabolism. Because the Cln1 protein was previously shown to be elevated in grr1 mutants, the effect of CLN1 overexpression on sulfite sensitivity was investigated. Overexpression in GRR1 cells resulted in sulfite sensitivity, suggesting a connection between CLN1 and sulfite metabolism. Multicopy FZF1, a putative transcription factor, was found to suppress the sulfite sensitive phenotype of grr1 strains, but not the glucose derepression or aberrant cell morphology. Multicopy FZF1 was also found to suppress the sensitivity of a number of other unrelated sulfite-sensitive mutants, but not that of ssu1 or met20, implying that FZF1 may act through Ssulp and Met20p. Disruption of FZF1 resulted in sulfite sensitivity when the construct was introduced in single copy at the FZF1 locus in a GRR1 strain, providing evidence that FZF1 is involved in sulfite metabolism.


2020 ◽  
Author(s):  
Seungwoo Cha ◽  
Chang Pyo Hong ◽  
Hyun Ah Kang ◽  
Ji-Sook Hahn

Abstract Gcr1, an important transcription factor for glycolytic genes in Saccharomyces cerevisiae, was recently revealed to have two isoforms, Gcr1U and Gcr1S, produced from un-spliced and spliced transcripts, respectively. In this study, by generating strains expressing only Gcr1U or Gcr1S using the CRISPR/Cas9 system, we elucidate differential activation mechanisms of these two isoforms. The Gcr1U monomer forms an active complex with its coactivator Gcr2 homodimer, whereas Gcr1S acts as a homodimer without Gcr2. The USS domain, 55 residues at the N-terminus existing only in Gcr1U, inhibits dimerization of Gcr1U and even acts in trans to inhibit Gcr1S dimerization. The Gcr1S monomer inhibits the metabolic switch from fermentation to respiration by directly binding to the ALD4 promoter, which can be restored by overexpression of the ALD4 gene, encoding a mitochondrial aldehyde dehydrogenase required for ethanol utilization. Gcr1U and Gcr1S regulate almost the same target genes, but show unique activities depending on growth phase, suggesting that these isoforms play differential roles through separate activation mechanisms depending on environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document