scholarly journals The Tryptophan Fluorescence Change upon Conformational Transition of the Phosphoenzyme Intermediate in Sarcoplasmic Reticulum Ca-ATPase Is Revealed in the Absence of Kand the Presence of Lasalocid

1995 ◽  
Vol 270 (7) ◽  
pp. 3089-3093 ◽  
Author(s):  
Hiroshi Suzuki ◽  
Tohru Kanazawa
1989 ◽  
Vol 56 (3) ◽  
pp. 427-433 ◽  
Author(s):  
Charles W. Slattery ◽  
Satish M. Sood ◽  
Pat Chang

SummaryThe association of non-phosphorylated (0-P) and fully phosphorylated (5-P) human β-caseins was studied by fluorescence spectroscopy and laser light scattering. The tryptophan fluorescence intensity (FI) level increased between 20 and 35 °C, indicating a change in the environment of that residue. A similar transition occurred when ANS was used as a probe. Transition temperatures were slightly lower in 10 mM-CaCl2 but were not affected by an equivalent increase in ionic strength caused by NaCl. The magnitude of the FI change was less for the 5-P than the 0-P protein but was increased for both by CaCl2 addition. These FI data were characteristic of a conformational change and this was supported by fluorescence polarization which indicated that with CaCl2, tryptophan and ANS mobility increased at the transition temperature even though the extent of protein association also increased. Light scattering suggested that protein association proeeeded with the primary formation of submicellar aggregates containing 20–30 monomers which then associated further to form particles of minimum micelle size (12–15 submicelles), and eventually larger. The temperature of precipitation of the 5-P form in the presence of CaCl2 was lower than the conformational transition and suggested that both hydrophobic interactions and Ca bridges between phosphate esters on adjacent molecules are important in micelle formation.


1992 ◽  
Vol 285 (1) ◽  
pp. 303-309 ◽  
Author(s):  
S Matsushita ◽  
D Pette

Molecular changes underlying the partial inactivation of the sarcoplasmic-reticulum (SR) Ca(2+-) ATPase in low-frequency-stimulated fast-twitch muscle were investigated in the present study. The specific Ca(2+)-ATPase activity, as well as the ATP- and acetyl phosphate-driven Ca2+ uptakes by the SR, were reduced by approx. 30% in 4-day-stimulated muscle. Phosphoprotein formation of the enzyme in the presence of ATP or Pi was also decreased to the same extent. Measurements of ATP binding revealed a 30% decrease in binding to the enzyme. These changes were accompanied by similar decreases in the ligand-induced (ATP, ADP, Pi) intrinsic tryptophan fluorescence. A decreased binding of fluorescein isothiocyanate (FITC) corresponded to the lower ATP binding and phosphorylation of the enzyme. Moreover, Pi-induced changes in fluorescence of the FITC-labelled enzyme did not differ between SR from stimulated and contralateral muscles, indicating that Ca(2+)- ATPase molecules which did not bind FITC were responsible for the decreased Pi-dependent phosphorylation, and therefore represented the inactive form of the enzyme. No differences existed between the Ca(2+)-induced changes in the intrinsic fluorescence of SR from stimulated and contralateral muscles which fit their similar Ca(2+)-binding characteristics. Taking the proposed architecture of the Ca2(+)-ATPase into consideration, our results suggest that the inactivation relates to a circumscribed structural alteration of the enzyme in sections of the active site consisting of the nucleotide-binding and phosphorylation domains.


2003 ◽  
Vol 369 (3) ◽  
pp. 509-518 ◽  
Author(s):  
Anne J. STOKKA ◽  
Torgeir FLATMARK

The optical biosensor technique, based on the surface plasmon resonance (SPR) phenomenon, was used for real-time measurements of the slow conformational transition (isomerization) which occurs in human phenylalanine hydroxylase (hPAH) on the binding/dissociation of l-phenylalanine (l-Phe). The binding to immobilized tetrameric wt-hPAH resulted in a time-dependent increase in the refractive index (up to approx. 3min at 25°C) with an end point of approx. 75RU (resonance units)/(pmolsubunit/mm2). By contrast, the contribution of binding the substrate (165Da) to its catalytic core enzyme [ΔN(1—102)/ΔC(428—452)-hPAH] was only approx. 2RU/(pmolsubunit/mm2). The binding isotherm for tetrameric and dimeric wt-hPAH revealed a [S]0.5-value of 98±7μM (h = 1.0) and 158±11μM, respectively, i.e. for the tetramer it is slightly lower than the value (145±5μM) obtained for the co-operative binding (h = 1.6±0.4) of l-Phe as measured by the change in intrinsic tryptophan fluorescence. The responses obtained by SPR and intrinsic tryptophan fluorescence are both considered to be related to the slow reversible conformational transition which occurs in the enzyme upon l-Phe binding, i.e. by the transition from a low-activity state ('T-state') to a relaxed high-activity state ('R-state') characteristic of this hysteretic enzyme, however, the two methods reflect different elements of the transition. Studies on the N- and C-terminal truncated forms revealed that the N-terminal regulatory domain (residues 1—117) plus catalytic domain (residues 118—411) were required for the full signal amplitude of the SPR response. Both the on- and off-rates for the conformational transition were biphasic, which is interpreted in terms of a difference in the energy barrier and the rate by which the two domains (catalytic and regulatory) undergo a conformational change. The substrate analogue 3-(2-thienyl)-l-alanine revealed an SPR response comparable with that of l-Phe on binding to wild-type hPAH.


1996 ◽  
Vol 317 (2) ◽  
pp. 439-445 ◽  
Author(s):  
Yamin M. KHAN ◽  
Anthony P. STARLING ◽  
J. Malcolm EAST ◽  
Anthony G. LEE

Labelling the Ca2+-ATPase of skeletal-muscle sarcoplasmic reticulum with o-phthalaldehyde (OPA) results in loss of ATPase activity at a 1:1 molar ratio of label to ATPase. The affinity of the ATPase for Ca2+ is unaffected, as is the E1/E2 equilibrium constant. The rate of dissociation of Ca2+ from the Ca2+-bound ATPase is also unaffected and Mg2+ increases the rate of dissociation, as for the unlabelled ATPase. Effects of Mg2+ on the fluorescence intensity of the ATPase labelled with 4-(bromomethyl)-6,7-dimethoxycoumarin are also unaffected by labelling with OPA, consistent with the fluorescence change reporting on Mg2+ binding at the gating site on the ATPase. The affinity of the ATPase for ATP is reduced by labelling, as is the rate of phosphorylation. The rate of phosphorylation is independent of the concentration of ATP above 25 μM ATP, so that the slow step is the first-order rate constant for phosphorylation by bound ATP. The rate of the back reaction between phosphorylated ATPase and ADP is little affected, suggesting that the slow step in phosphorylation could be the slow conformation step before phosphoryl transfer. The rate of dephosphorylation of the phosphorylated ATPase is also decreased, suggesting that a similar conformation change could be involved in the dephosphorylation step. The rate of the Ca2+ transport step appears to be unaffected by labelling. The net result of these changes is that the labelled ATPase is present predominantly in a Ca2+-free, phosphorylated form at steady state in the presence of ATP.


2004 ◽  
Vol 383 (2) ◽  
pp. 361-370 ◽  
Author(s):  
Elena S. DREMINA ◽  
Victor S. SHAROV ◽  
Keshava KUMAR ◽  
Asma ZAIDI ◽  
Elias K. MICHAELIS ◽  
...  

The anti-apoptotic effect of Bcl-2 is well established, but the detailed mechanisms are unknown. In the present study, we show in vitro a direct interaction of Bcl-2 with the rat skeletal muscle SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase), leading to destabilization and inactivation of the protein. Recombinant human Bcl-2Δ21, a truncated form of Bcl-2 with a deletion of 21 residues at the C-terminal membrane-anchoring region, was expressed and affinity-purified as a glutathione S-transferase fusion protein. Bcl-2Δ21 co-immunoprecipitated and specifically interacted with SERCA in an in vitro-binding assay. The original level of Bcl-2 in sarcoplasmic reticulum vesicles was very low, i.e. hardly detectable by immunoblotting with specific antibodies. The addition of Bcl-2Δ21 to the sarcoplasmic reticulum resulted in the inhibition of the Ca2+-ATPase activity dependent on the Bcl-2Δ21/SERCA molar ratio and incubation time. A complete inactivation of SERCA was observed after 2.5 h of incubation at approx. 2:1 molar ratio of Bcl-2Δ21 to SERCA. In contrast, Bcl-2Δ21 did not significantly change the activity of the plasma-membrane Ca2+-ATPase. The redox state of the single Cys158 residue in Bcl-2Δ21 and the presence of GSH did not affect SERCA inhibition. The interaction of Bcl-2Δ21 with SERCA resulted in a conformational transition of SERCA, assessed through a Bcl-2-dependent increase in SERCA thiols available for the labelling with a fluorescent reagent. This partial unfolding of SERCA did not lead to a higher sensitivity of SERCA towards oxidative inactivation. Our results suggest that the direct interaction of Bcl-2 with SERCA may be involved in the regulation of apoptotic processes in vivo through modulation of cytoplasmic and/or endoplasmic reticulum calcium levels required for the execution of apoptosis.


1997 ◽  
Vol 325 (2) ◽  
pp. 533-542 ◽  
Author(s):  
Bannikuppe D. SHIVANNA ◽  
Elizabeth S. ROWE

The properties of Ca2+-ATPase purified and reconstituted from rabbit skeletal sarcoplasmic reticulum (SR) has been studied in comparison with the preparations obtained by the commonly used detergent poly(oxyethylene)8-lauryl ether (C12E8) and the bile salt detergents cholate and deoxycholate. 1,2-Diheptanoyl-sn-phosphatidylcholine (DHPC) has been shown to be excellent for solubilizing a wide variety of membrane proteins [Kessi, Poiree, Wehrli, Bachofen, Semenza and Hauser (1994) Biochemistry 33, 10825–10836]. The DHPC method consistently gave higher yields of purified Ca2+-ATPase with a greater specific activity than the methods with C12E8, cholate, or deoxycholate. DHPC and C12E8 were superior to cholate and deoxycholate in active enzyme yields and specific activity. DHPC-solubilized Ca2+-ATPase purified on a density gradient retained the E1Ca–E1*Ca conformational transition, whereas the enzyme from the C12E8 purification did not retain this transition. The coupling of Ca2+ transported to ATP hydrolysed in the DHPC-purified enzyme was maximal and matched the values obtained with native SR, whereas the coupling was much lower for the C12E8-purified enzyme. The specific activity of Ca2+-ATPase reconstituted into dioleoylphosphatidylcholine vesicles with DHPC was up to 2-fold greater than that achieved with C12E8, and is comparable to that measured in the native SR. Finally, the dissociation of Ca2+-ATPase into monomers by DHPC preserved the ATPase activity, whereas similar dissociation by C12E8 gave only one-sixth the activity of that obtained with DHPC. These studies show that the Ca2+-ATPase solubilized, purified and reconstituted with DHPC is superior to that obtained with C12E8 in significant ways, making it a preparation suitable for detailed studies on the mechanism of ion transport and the role of protein–lipid interactions in the function of membrane proteins.


1986 ◽  
Vol 234 (2) ◽  
pp. 363-371 ◽  
Author(s):  
I Jona ◽  
A Martonosi

The effects of Ca2+, lanthanide ions (Gd3+, La3+ and Pr3+) and membrane potential on the fluorescence of tryptophan and covalently bound fluorescein were analysed in native and fluorescein isothiocyanate (FITC)-labelled sarcoplasmic reticulum vesicles. The binding of Ca2+ and lanthanides to the Ca2+-ATPase increases the fluorescence intensity of tryptophan and decreases the fluorescence intensity of FITC; the dependence of these effects on cation concentration is consistent with the involvement of the high-affinity Ca2+-binding sites of the Ca2+-ATPase in the cation-induced fluorescence changes. The fluorescence of FITC-labelled sarcoplasmic reticulum vesicles is also influenced by membrane potential changes induced by ion substitution. Inside positive potential increases, while inside negative potential decreases, the fluorescence of bound FITC. Smaller potential-dependent changes in tryptophan fluorescence were also observed. The effects of Ca2+, lanthanides and membrane potential on the fluorescence of tryptophan and FITC are discussed in terms of the two major conformations of the Ca2+-ATPase (E1 and E2), that are assumed to alternate during Ca2+ transport. The observations support the suggestion [Dux, Taylor, Ting-Beall & Martonosi (1985) J. Biol. Chem. 260, 11730-11743] that the vanadate-induced crystals of Ca2+-ATPase represent the E2, while the Ca2+ and lanthanide-induced crystals the E1, conformation of the enzyme.


Sign in / Sign up

Export Citation Format

Share Document