Hydrophobic interactions in human casein micelle formation: β-casein aggregation

1989 ◽  
Vol 56 (3) ◽  
pp. 427-433 ◽  
Author(s):  
Charles W. Slattery ◽  
Satish M. Sood ◽  
Pat Chang

SummaryThe association of non-phosphorylated (0-P) and fully phosphorylated (5-P) human β-caseins was studied by fluorescence spectroscopy and laser light scattering. The tryptophan fluorescence intensity (FI) level increased between 20 and 35 °C, indicating a change in the environment of that residue. A similar transition occurred when ANS was used as a probe. Transition temperatures were slightly lower in 10 mM-CaCl2 but were not affected by an equivalent increase in ionic strength caused by NaCl. The magnitude of the FI change was less for the 5-P than the 0-P protein but was increased for both by CaCl2 addition. These FI data were characteristic of a conformational change and this was supported by fluorescence polarization which indicated that with CaCl2, tryptophan and ANS mobility increased at the transition temperature even though the extent of protein association also increased. Light scattering suggested that protein association proeeeded with the primary formation of submicellar aggregates containing 20–30 monomers which then associated further to form particles of minimum micelle size (12–15 submicelles), and eventually larger. The temperature of precipitation of the 5-P form in the presence of CaCl2 was lower than the conformational transition and suggested that both hydrophobic interactions and Ca bridges between phosphate esters on adjacent molecules are important in micelle formation.

1989 ◽  
Vol 56 (3) ◽  
pp. 463-470 ◽  
Author(s):  
Henk J. Vreeman ◽  
Bas W. van Markwijk ◽  
Paula Both

SummaryHydrodynamic radii from inelastic light-scattering experiments and radii of gyration from Zimm plots give an indication of the change of average casein micelle size when the pH is changed. Combination of the results of both types of measurements gives information on changes in the micelle protein matrix, i.e. changes in the voluminosity.The voluminosity was also determined by the pellet method and by electron microscopy which also provided comparative data on size parameters.


2014 ◽  
Vol 30 (4) ◽  
pp. 561-570 ◽  
Author(s):  
P. Hristov ◽  
B. Neov ◽  
H. Sbirkova ◽  
D. Teofanova ◽  
G. Radoslavov ◽  
...  

The present study aimed to compare the size of casein micelle in cow milk sample in function of kappa casein (CSN3) genetic polymorphism. Sixteen cows from Bulgarian Rhodopean cattle breed were genotyped by PCRRFLP analysis. Milk samples from the three found CSN3 genotypes (AB, AA and BB) were employed for the determination of casein micelles size by Dynamic Light Scattering (DLS). The results showed differences in the size and polydispersity of the casein micelles between the milks of cows with different genotypes. Hydrodynamic radii of micelles at a scattering angle of 90?C varied from 80 to 120 nm and polydispersity varied from 0.15 to 0.37. In conclusion casein micelle size of CSN3 AA cows (~ 120 nm) exceed with about 60% cows with (~ 80 nm) and BB genotype (~ 70 nm). These results could be useful for improving technological properties of the milk.


2021 ◽  
Vol 117 ◽  
pp. 104980
Author(s):  
Marije Akkerman ◽  
Lene Buhelt Johansen ◽  
Valentin Rauh ◽  
Nina Aagaard Poulsen ◽  
Lotte Bach Larsen

Author(s):  
Natalia V. Mironenko ◽  
Irina V. Shkutina ◽  
Vladimir F. Selemenev

The regularities of changes in structural characteristics during the formation of associates in micellar aqueous solutions of triterpene saponins Quillaja Saponin and Sapindus Mukorossi are considered. The dependence of surface tension and adsorption on the concentration of an aqueous saponin solution is analyzed, and the values of surface activity and parameters of the adsorption layer are calculated. The average values of diffusion coefficients for spherical and cylindrical micelles are determined based on the measurement of the solution viscosity. The effect of the electrolyte solution on the surface tension and viscosity of glycoside solutions is studied: when the electrolyte is introduced into the saponin solution, the surface tension decreases, which leads to a shift in the critical concentration of micelle formation towards lower concentrations. The introduction of potassium chloride electrolyte reduces the degree of ionization and, as a result of suppressing the electroviscosity effect, leads to a decrease in the viscosity of the solution. The dynamic light scattering method is used to determine the size of glycoside aggregates. It is established that there are aggregates of several sizes in an aqueous solution of saponin. The size and shape of aggregates were calculated using the concepts of micelle packing parameters. In the region of very low concentrations of glycoside solutions, when approaching the critical concentration of micelle formation in the solution, there are spherical micelles. A further increase in the saponin concentration in the solution leads to a decrease in the content of structures with a hydrodynamic radius of 50-80 nm and the appearance of larger agglomerates with sizes greater than 100 nm. It was found that micelles acquire a less hydrated and more densely packed cylindrical shape in the concentration range of 1.7-2.6 mmol/dm3. Compaction of associates leads to an increase in the content of particles with a hydrodynamic radius of 150-250 nm and larger ones, and their presence predicts the appearance of larger agglomerates. Analyzing the data obtained using the dynamic light scattering method, it can be concluded that aggregates of several sizes co-exist in the volume of aqueous saponin solutions at certain concentrations.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1143
Author(s):  
Julius Sundermann ◽  
Holger Zagst ◽  
Judith Kuntsche ◽  
Hermann Wätzig ◽  
Heike Bunjes

Bone morphogenetic protein 2 (BMP-2) has a high tendency to aggregate at physiological pH and physiological ionic strength, which can complicate the development of growth factor delivery systems. The aggregation behavior in differently concentrated BMP-2 solutions was investigated using dynamic and static light scattering. It was found that at higher concentrations larger aggregates are formed, whose size decreases again with increasing dilution. A solubilizing effect and therefore less aggregation was observed upon the addition of albumin. Imaged capillary isoelectric focusing and the simulation of the surface charges of BMP-2 were used to find a possible explanation for the unusually low solubility of BMP-2 at physiological pH. In addition to hydrophobic interactions, attractive electrostatic interactions might be decisive in the aggregation of BMP-2 due to the particular distribution of surface charges. These results help to better understand the solubility behavior of BMP-2 and thus support future pharmaceutical research and the development of new strategies for the augmentation of bone healing.


2019 ◽  
Vol 49 (3) ◽  
Author(s):  
Denise Ribeiro de Freitas ◽  
Fernando Nogueira de Souza ◽  
Jamil Silvano de Oliveira ◽  
Diêgo dos Santos Ferreira ◽  
Cristiane Viana Guimarães Ladeira ◽  
...  

ABSTRACT: The aim of the present study was to explore the association between milk protein content and casein micelle size and to examine the effects of casein micelle size on enzymatic curd strength and dry matter curd yield using reduced laboratory-scale cheese production. In this research, 140 bulk tank milk samples were collected at dairy farms. The traits were analyzed using two linear models, including only fixed effects. Smaller micelles were associated with higher κ-casein and lower αs-casein contents. The casein micellar size (in the absence of the αs-casein and κ-casein effects) did not affect the enzymatic curd strength; however, smaller casein micelles combined with higher fat, lactose, casein and κ-casein contents exhibited a favorable effect on the dry matter curd yield. Overall, results of the present study provide new insights into the importance of casein micelle size for optimizing cheese production.


2003 ◽  
Vol 369 (3) ◽  
pp. 509-518 ◽  
Author(s):  
Anne J. STOKKA ◽  
Torgeir FLATMARK

The optical biosensor technique, based on the surface plasmon resonance (SPR) phenomenon, was used for real-time measurements of the slow conformational transition (isomerization) which occurs in human phenylalanine hydroxylase (hPAH) on the binding/dissociation of l-phenylalanine (l-Phe). The binding to immobilized tetrameric wt-hPAH resulted in a time-dependent increase in the refractive index (up to approx. 3min at 25°C) with an end point of approx. 75RU (resonance units)/(pmolsubunit/mm2). By contrast, the contribution of binding the substrate (165Da) to its catalytic core enzyme [ΔN(1—102)/ΔC(428—452)-hPAH] was only approx. 2RU/(pmolsubunit/mm2). The binding isotherm for tetrameric and dimeric wt-hPAH revealed a [S]0.5-value of 98±7μM (h = 1.0) and 158±11μM, respectively, i.e. for the tetramer it is slightly lower than the value (145±5μM) obtained for the co-operative binding (h = 1.6±0.4) of l-Phe as measured by the change in intrinsic tryptophan fluorescence. The responses obtained by SPR and intrinsic tryptophan fluorescence are both considered to be related to the slow reversible conformational transition which occurs in the enzyme upon l-Phe binding, i.e. by the transition from a low-activity state ('T-state') to a relaxed high-activity state ('R-state') characteristic of this hysteretic enzyme, however, the two methods reflect different elements of the transition. Studies on the N- and C-terminal truncated forms revealed that the N-terminal regulatory domain (residues 1—117) plus catalytic domain (residues 118—411) were required for the full signal amplitude of the SPR response. Both the on- and off-rates for the conformational transition were biphasic, which is interpreted in terms of a difference in the energy barrier and the rate by which the two domains (catalytic and regulatory) undergo a conformational change. The substrate analogue 3-(2-thienyl)-l-alanine revealed an SPR response comparable with that of l-Phe on binding to wild-type hPAH.


Sign in / Sign up

Export Citation Format

Share Document