scholarly journals In the Uncoupling Protein (UCP-1) His-214 Is Involved in the Regulation of Purine Nucleoside Triphosphate but Not Diphosphate Binding

1998 ◽  
Vol 273 (38) ◽  
pp. 24368-24374 ◽  
Author(s):  
Karim S. Echtay ◽  
Martin Bienengraeber ◽  
Edith Winkler ◽  
Martin Klingenberg
2020 ◽  
Vol 15 (11) ◽  
pp. 2872-2884
Author(s):  
Marie Flamme ◽  
Pascal Röthlisberger ◽  
Fabienne Levi-Acobas ◽  
Mohit Chawla ◽  
Romina Oliva ◽  
...  

1976 ◽  
Vol 31 (7-8) ◽  
pp. 486-487
Author(s):  
Joachim Betz ◽  
Lothar Träger

Abstract Levels of the purine nucleoside triphosphates are de­ creasing towards the end of log phase growth of Streptomyces hydrogenans. Induction of 20β-hydroxysteroid dehy-drogenase by addition of 11β,21-dihydroxy-4,17 (20) -pregna-dien-3-one to the growth medium leads to a pronounced drop in purine nucleoside triphosphate levels with is irreversible in contrast to the initial loss and later accumulation of RNA.


Author(s):  
C. Jennermann ◽  
S. A. Kliewer ◽  
D. C. Morris

Peroxisome proliferator-activated receptor gamma (PPARg) is a member of the nuclear hormone receptor superfamily and has been shown in vitro to regulate genes involved in lipid metabolism and adipocyte differentiation. By Northern analysis, we and other researchers have shown that expression of this receptor predominates in adipose tissue in adult mice, and appears first in whole-embryo mRNA at 13.5 days postconception. In situ hybridization was used to find out in which developing tissues PPARg is specifically expressed.Digoxigenin-labeled riboprobes were generated using the Genius™ 4 RNA Labeling Kit from Boehringer Mannheim. Full length PPAR gamma, obtained by PCR from mouse liver cDNA, was inserted into pBluescript SK and used as template for the transcription reaction. Probes of average size 200 base pairs were made by partial alkaline hydrolysis of the full length transcripts. The in situ hybridization assays were performed as described previously with some modifications. Frozen sections (10 μm thick) of day 18 mouse embryos were cut, fixed with 4% paraformaldehyde and acetylated with 0.25% acetic anhydride in 1.0M triethanolamine buffer. The sections were incubated for 2 hours at room temperature in pre-hybridization buffer, and were then hybridized with a probe concentration of 200μg per ml at 70° C, overnight in a humidified chamber. Following stringent washes in SSC buffers, the immunological detection steps were performed at room temperature. The alkaline phosphatase labeled, anti-digoxigenin antibody and detection buffers were purchased from Boehringer Mannheim. The sections were treated with a blocking buffer for one hour and incubated with antibody solution at a 1:5000 dilution for 2 hours, both at room temperature. Colored precipitate was formed by exposure to the alkaline phosphatase substrate nitrobluetetrazoliumchloride/ bromo-chloroindlylphosphate.


2020 ◽  
Vol 134 (5) ◽  
pp. 473-512 ◽  
Author(s):  
Ryan P. Ceddia ◽  
Sheila Collins

Abstract With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand–receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein–coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.


Sign in / Sign up

Export Citation Format

Share Document