scholarly journals Calcium-dependent Regulation of CytochromecGene Expression in Skeletal Muscle Cells

1999 ◽  
Vol 274 (14) ◽  
pp. 9305-9311 ◽  
Author(s):  
Damien Freyssenet ◽  
Martino Di Carlo ◽  
David A. Hood
1995 ◽  
Vol 108 (9) ◽  
pp. 2973-2981 ◽  
Author(s):  
M. Zeschnigk ◽  
D. Kozian ◽  
C. Kuch ◽  
M. Schmoll ◽  
A. Starzinski-Powitz

Cadherins are a gene family encoding calcium-dependent cell adhesion proteins which are thought to act in the establishment and maintenance of tissue organization. M-cadherin, one member of the family, has been found in myogenic cells of somitic origin during embryogenesis and in the adult. These findings have suggested that M-cadherin is involved in the regulation of morphogenesis of skeletal muscle cells. Therefore, we investigated the function of M-cadherin in the fusion of myoblasts into myotubes (terminal differentiation) in cell culture. Furthermore, we tested whether M-cadherin might influence (a) the expression of troponin T, a typical marker of biochemical differentiation of skeletal muscle cells, and (b) withdrawal of myoblasts from the cell cycle (called terminal commitment). The studies were performed by using antagonistic peptides which correspond to sequences of the putative M-cadherin binding domain. Analogous peptides of N-cadherin have previously been shown to interfere functionally with the N-cadherin-mediated cell adhesion. In the presence of antagonistic M-cadherin peptides, the fusion of myoblasts into myotubes was inhibited. Analysis of troponin T revealed that it was downregulated at the protein level although its mRNA was still detectable. In addition, withdrawal from the cell cycle typical for terminal commitment of muscle cells was not complete in fusion-blocked myogenic cells. Finally, expression of M-cadherin antisense RNA reducing the expression of the endogenous M-cadherin protein interfered with the fusion process of myoblasts. Our data imply that M-cadherin-mediated myoblast interaction plays an important role in terminal differentiation of skeletal muscle cells.


2007 ◽  
Vol 292 (5) ◽  
pp. C1960-C1970 ◽  
Author(s):  
Juan Antonio Valdés ◽  
Jorge Hidalgo ◽  
José Luis Galaz ◽  
Natalia Puentes ◽  
Mónica Silva ◽  
...  

Depolarization of skeletal muscle cells by either high external K+ or repetitive extracellular field potential pulses induces calcium release from internal stores. The two components of this release are mediated by either ryanodine receptors or inositol 1,4,5-trisphosphate (IP3) receptors and show differences in kinetics, amplitude, and subcellular localization. We have reported that the transcriptional regulators including ERKs, cAMP/Ca2+-response element binding protein, c- fos, c- jun, and egr-1 are activated by K+-induced depolarization and that their activation requires IP3-dependent calcium release. We presently describe the activation of the nuclear transcription factor NF-κB in response to depolarization by either high K+ (chronic) or electrical pulses (fluctuating). Calcium transients of relative short duration activate an NF-κB reporter gene to an intermediate level, whereas long-lasting calcium increases obtained by prolonged electrical stimulation protocols of various frequencies induce maximal activation of NF-κB. This activation is independent of extracellular calcium, whereas calcium release mediated by either ryanodine or IP3 receptors contribute in all conditions tested. NF-κB activation is mediated by IκBα degradation and p65 translocation to the nucleus. Partial blockade by N-acetyl-l-cysteine, a general antioxidant, suggests the participation of reactive oxygen species. Calcium-dependent signaling pathways such as those linked to calcineurin and PKC also contribute to NF-κB activation by depolarization, as assessed by blockade through pharmacological agents. These results suggest that NF-κB activation in skeletal muscle cells is linked to membrane depolarization and depends on the duration of elevated intracellular calcium. It can be regulated by sequential activation of calcium release mediated by the ryanodine and by IP3 receptors.


2009 ◽  
Vol 96 (3) ◽  
pp. 121a-122a
Author(s):  
Gonzalo Jorquera ◽  
Nevenka Juretic ◽  
Alejandra Espinosa ◽  
Enrique Jaimovich ◽  
Nora Riveros

2009 ◽  
Vol 297 (3) ◽  
pp. C581-C590 ◽  
Author(s):  
Gonzalo Jorquera ◽  
Nevenka Juretić ◽  
Enrique Jaimovich ◽  
Nora Riveros

Heat shock proteins (HSPs) are a conserved family of cytoprotective polypeptides, synthesized by cells in response to stress. Hsp70 and heme oxygenase 1 (Hmox-1) are induced by a variety of cellular stressors in skeletal muscle, playing a role in long-term adaptations and muscle fibers regeneration. Though HSPs expression after exercise has been intensely investigated, the molecular mechanisms concerning Hsp70 and Hmox-1 induction are poorly understood. The aim of this work was to investigate the involvement of calcium in Hsp70 and Hmox-1 expression upon depolarization of skeletal muscle cells. We observed that depolarization of myotubes increased both mRNA levels and protein expression for Hsp70 and Hmox-1. Stimulation in the presence of intracellular calcium chelator BAPTA-AM resulted in a complete inhibition of Hsp70-induced expression. It is known that inositol-1,4,5-trisphophate (IP3)-mediated slow Ca2+ transients, evoked by membrane depolarization, are involved in the regulation of gene expression. Here we demonstrated that inhibition of IP3-dependent calcium signals decreased both Hsp70 mRNA induction and Hsp70 and Hmox-1 protein expression. Inhibitors of calcium-dependent protein kinase C also abolished Hsp70 mRNA induction. Our results provide evidence that membrane depolarization increases Hsp70 and Hmox-1 expression in cultured skeletal muscle cells, which the effect is critically dependent on Ca2+ released from IP3-sensitive intracellular stores and that it involves PKC as an upstream effector in Hsp70 mRNA-induced expression.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
II Ezeigbo ◽  
C Wheeler-Jones ◽  
S Gibbons ◽  
ME Cleasby

2018 ◽  
Author(s):  
S Höckele ◽  
P Huypens ◽  
C Hoffmann ◽  
T Jeske ◽  
M Hastreiter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document