scholarly journals The C-terminal Subdomain (IF2 C-2) Contains the Entire fMet-tRNA Binding Site of Initiation Factor IF2

2000 ◽  
Vol 275 (4) ◽  
pp. 2447-2454 ◽  
Author(s):  
Roberto Spurio ◽  
Letizia Brandi ◽  
Enrico Caserta ◽  
Cynthia L. Pon ◽  
Claudio O. Gualerzi ◽  
...  
2002 ◽  
Vol 46 (11) ◽  
pp. 3339-3342 ◽  
Author(s):  
Christine B. Kofoed ◽  
Birte Vester

ABSTRACT The antibiotic growth promoter avilamycin inhibits protein synthesis by binding to bacterial ribosomes. Here the binding site is further characterized on Escherichia coli ribosomes. The drug interacts with domain V of 23S rRNA, giving a chemical footprint at nucleotides A2482 and A2534. Selection of avilamycin-resistant Halobacterium halobium cells revealed mutations in helix 89 of 23S rRNA. Furthermore, mutations in helices 89 and 91, which have previously been shown to confer resistance to evernimicin, give cross-resistance to avilamycin. These data place the binding site of avilamycin on 23S rRNA close to the elbow of A-site tRNA. It is inferred that avilamycin interacts with the ribosomes at the ribosomal A-site interfering with initiation factor IF2 and tRNA binding in a manner similar to evernimicin.


1981 ◽  
Vol 184 (3) ◽  
pp. 551-556 ◽  
Author(s):  
Steven Fabijanski ◽  
Maria Pellegrini

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bingyi Chen ◽  
Siting Luo ◽  
Songxuan Zhang ◽  
Yingchen Ju ◽  
Qiong Gu ◽  
...  

AbstractThe polyketide natural product reveromycin A (RM-A) exhibits antifungal, anticancer, anti-bone metastasis, anti-periodontitis and anti-osteoporosis activities by selectively inhibiting eukaryotic cytoplasmic isoleucyl-tRNA synthetase (IleRS). Herein, a co-crystal structure suggests that the RM-A molecule occupies the substrate tRNAIle binding site of Saccharomyces cerevisiae IleRS (ScIleRS), by partially mimicking the binding of tRNAIle. RM-A binding is facilitated by the copurified intermediate product isoleucyl-adenylate (Ile-AMP). The binding assays confirm that RM-A competes with tRNAIle while binding synergistically with l-isoleucine or intermediate analogue Ile-AMS to the aminoacylation pocket of ScIleRS. This study highlights that the vast tRNA binding site of the Rossmann-fold catalytic domain of class I aminoacyl-tRNA synthetases could be targeted by a small molecule. This finding will inform future rational drug design.


2017 ◽  
Author(s):  
Wei Lin ◽  
Kalyan Das ◽  
David Degen ◽  
Abhishek Mazumder ◽  
Diego Duchi ◽  
...  

Fidaxomicin is an antibacterial drug in clinical use in treatment ofClostridium difficilediarrhea1–2. The active pharmaceutical ingredient of fidaxomicin, lipiarmycin A3 (Lpm)1–4, is a macrocyclic antibiotic with bactericidal activity against Gram-positive bacteria and efflux-deficient strains of Gram-negative bacteria1–2, 5. Lpm functions by inhibiting bacterial RNA polymerase (RNAP)6–8. Lpm exhibits no cross-resistance with the classic RNAP inhibitor rifampin (Rif)7, 9and inhibits transcription initiation at an earlier step than Rif8–11, suggesting that the binding site and mechanism of Lpm differ from those of Rif. Efforts spanning a decade to obtain a crystal structure of RNAP in complex with Lpm have been unsuccessful. Here, we report a cryo-EM12–13structure ofMycobacterium tuberculosisRNAP holoenzyme in complex with Lpm at 3.5 Å resolution. The structure shows that Lpm binds at the base of the RNAP “clamp,” interacting with the RNAP switch region and the RNAP RNA exit channel. The binding site on RNAP for Lpm does not overlap the binding sites for other RNAP inhibitors, accounting for the absence of cross-resistance of Lpm with other RNAP inhibitors. The structure exhibits an open conformation of the RNAP clamp, with the RNAP clamp swung outward by ~17° relative to its position in catalytically competent RNAP-promoter transcription initiation complexes, suggesting that Lpm traps an open-clamp conformational state. Single-molecule fluorescence resonance energy transfer14experiments confirm that Lpm traps an open-clamp conformational state and define effects of Lpm on clamp opening and closing dynamics. We propose that Lpm inhibits transcription initiation by trapping an open-clamp conformational state, thereby preventing simultaneous engagement of transcription initiation factor σ regions 2 and 4 with promoter -10 and -35 elements. The results provide information essential to understanding the mode of action of Lpm, account for structure-activity relationships of known Lpm analogs, and suggest modifications to Lpm that could yield new, improved Lpm analogs.


2009 ◽  
Vol 87 (2) ◽  
pp. 431-443 ◽  
Author(s):  
Andrew T. McGuire ◽  
Robert A.B. Keates ◽  
Stephanie Cook ◽  
Dev Mangroo

Utp8p is an essential 80 kDa intranuclear tRNA chaperone that transports tRNAs from the nucleolus to the nuclear tRNA export receptors in Saccharomyces cerevisiae . To help understand the mechanism of Utp8p function, predictive tools were used to derive a partial model of the tertiary structure of Utp8p. Secondary structure prediction, supported by circular dichroism measurements, indicated that Utp8p is divided into 2 domains: the N-terminal beta sheet and the C-terminal alpha helical domain. Tertiary structure prediction was more challenging, because the amino acid sequence of Utp8p is not directly homologous to any known protein structure. The tertiary structures predicted by threading and fold recognition had generally modest scores, but for the C-terminal domain, threading and fold recognition consistently pointed to an alpha–alpha superhelix. Because of the sequence diversity of this fold type, no single structural template was an ideal fit to the Utp8p sequence. Instead, a composite template was constructed from 3 different alpha–alpha superhelix structures that gave the best matches to different portions of the C-terminal domain sequence. In the resulting model, the most conserved sequences grouped in a tight cluster of positive charges on a protein that is otherwise predominantly negative, suggesting that the positive-charge cleft may be the tRNA-binding site. Mutations of conserved positive residues in the proposed binding site resulted in a reduction in the affinity of Utp8p for tRNA both in vivo and in vitro. Models were also derived for the 10 fungal homologues of Utp8p, and the localization of the positive charges on the conserved surface was found in all cases. Taken together, these data suggest that the positive-charge cleft of the C-terminal domain of Utp8p is involved in tRNA-binding.


FEBS Letters ◽  
1981 ◽  
Vol 135 (1) ◽  
pp. 155-158 ◽  
Author(s):  
S.N. Vladimirov ◽  
D.M. Graifer ◽  
G.G. Karpova

Sign in / Sign up

Export Citation Format

Share Document