scholarly journals Correction: Lot1 is a key element of the pituitary adenylate cyclase-activating polypeptide (PACAP)/cyclic AMP pathway that negatively regulates neuronal precursor proliferation.

2020 ◽  
Vol 295 (11) ◽  
pp. 3746-3746
Author(s):  
Tatiana Fila ◽  
Stefania Trazzi ◽  
Christophe Crochemore ◽  
Renata Bartesaghi ◽  
Elisabetta Ciani
2009 ◽  
Vol 284 (22) ◽  
pp. 15325-15338 ◽  
Author(s):  
Tatiana Fila ◽  
Stefania Trazzi ◽  
Christophe Crochemore ◽  
Renata Bartesaghi ◽  
Elisabetta Ciani

1995 ◽  
Vol 67 (4) ◽  
pp. 399-402
Author(s):  
Kaoru Kondo ◽  
Hitoshi Hashimoto ◽  
Kazuko Sakata ◽  
Hiroshi Saga ◽  
Jun-ichi Kitanaka ◽  
...  

1997 ◽  
Vol 78 (2) ◽  
pp. 1175-1179 ◽  
Author(s):  
S. Y. Wu ◽  
N. J. Dun

Wu, S. Y. and N. J. Dun. Potentiation of NMDA currents by pituitary adenylate cyclase activating polypeptide in neonatal rat sympathetic preganglionic neurons. J. Neurophysiol. 78: 1175–1179, 1997. Whole cell patch-clamp recordings were made from sympathetic preganglionic neurons (SPNs) in the intermediolateral cell column of thoracolumbar spinal cord slices of 12- to 16-day-old rats, and the effects of pituitary adenylate cyclase activating polypeptide (PACAP)-38 on N-methyl-d-aspartate (NMDA)- and kainate (KA)-induced inward currents were examined. PACAP, in concentrations (10–30 nM) that caused no significant change of holding currents, reversibly increased NMDA-induced currents but not KA-induced currents. At higher concentrations (>30 nM), the peptide produced a sustained inward current. The potentiating effect of PACAP was nullified by prior incubation of the slices with the adenylate cyclase inhibitor MDL-12,330A (25 μM). Further, superfusing the slices with the membrane-permeable cyclic AMP analogue N6,2′-0-dibutyryladenosine 3′:5′-cyclic monophosphate (100–300 μM) in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (700 μM) increased the NMDA currents. This result suggests that PACAP selectively increases NMDA-receptor-mediated responses in the rat SPNs, probably via a cyclic-AMP-dependent mechanism, providing evidence that the peptide may be involved in synaptic plasticity.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Rayudu GOPALAKRISHNA ◽  
Charlotte Y Lin ◽  
Andrew Oh ◽  
William J Mack

Introduction: After a stroke, axonal regeneration is inhibited by diverse axonal growth inhibitors, such as Nogo-A. They bind to the Nogo-A receptor 1 (NgR1) and induce the collapse of growth cones and inhibit neurite outgrowth. Since NgR1 is the receptor for a variety of axonal growth inhibitors, it is a crucial target for the prevention of axonal growth inhibition. Pituitary adenylate cyclase-activating polypeptide (PACAP) has neuroprotective and neurotrophic activities and increases neuritogenesis and synaptic plasticity. It enhances functional recovery after stroke in various animal models. Methods: Neuroscreen-1 (NS-1) cells were selected for this study as they produce rapid and robust neurite outgrowth with NGF. Cell surface NgR1 was detected using the indirect immunofluorescence method. The internalization of NgR1 was quantitated using the biotinylation method and Western immunoblotting. Results: Using the indirect immunofluorescence method, we found that PACAP (PACAP-38) induced a rapid decrease in the cell surface expression of NgR1 in NS-1 cells. The biotinylation method revealed that PACAP induced the internalization of NgR1. This internalization of NgR1 was blocked by pretreatment of NS-1 cells with SQ 22536, an inhibitor for adenylate cyclase, suggesting that cAMP plays a crucial role in the internalization of NgR1. The protein kinase A (PKA)-specific inhibitor KT5720 did not block PACAP-induced NgR1 internalization, whereas the exchange protein directly activated by cAMP (Epac)-specific inhibitor ESI-09 blocked this internalization. Collectively, this data suggests that PACAP-induced NgR1 internalization is independent of PKA but is dependent on Epac. The PACAP-induced decrease in cell surface expression of NgR1 and its internalization desensitized NS-1 cells to Nogo-66-induced growth cone collapse and enhanced neuritogenesis. Conclusion: Cyclic-AMP and Epac are involved in the PACAP-induced desensitization of neuronal cells to Nogo-A and increase in neuritogenesis. Since PACAP crosses the blood-brain barrier, it may be a useful therapeutic agent to overcome axonal growth inhibitors and enhance functional recovery after stroke.


1992 ◽  
Vol 134 (1) ◽  
pp. 33-41 ◽  
Author(s):  
G. R. Hart ◽  
H. Gowing ◽  
J. M. Burrin

ABSTRACT We have demonstrated that the novel hypothalamic peptide pituitary adenylate cyclase-activating poly-peptide (PACAP-38; 0·1–100 nmol/l) caused an increase in the release of GH, ACTH, LH and α-subunit and accumulation of intracellular cyclic AMP from dispersed rat anterior pituitary cells in static culture for 24 h. There were no significant effects on TSH or prolactin release over the same time-period. PACAP-38 (10 nmol/l) increased the release of GH by 1·3-fold (P<0·05), ACTH by 1·9-fold (P<0·05), LH by 3·5-fold (P<0·001) and α-subunit by 2·0-fold (P< 0·005) and the accumulation of intracellular cyclic AMP by >2-fold (P<0·001) after 24 h. However, the time-course for the effect of PACAP-38 (1 mmol/l) on hormone release and intracellular cyclic AMP levels showed a temporal dissociation. The effect of PACAP-38 on GH and ACTH levels did not reach significance until 24 h whereas the effect of PACAP-38 on LH and α-subunit release reached significance after 4 h implying a different mechanism of action for their release. To investigate the PACAP-induced secretion of LH and α-subunit further, we examined the effects of PACAP after down-regulation of protein kinase C (PKC). PACAP-38 at a dose maximal for the stimulation of LH and α-subunit release (10 nmol/l) added together with the PKC activator, 12-0-tetradecanoyl-phorbol-13-acetate (TPA; 0·1 μmol/l) had no greater effect on LH and α-subunit release than TPA alone over a 4 h incubation period. Increasing the pretreatment time with TPA (0–5 h) at a dose (0·1 μmol/l) known to deplete PKC activity substantially, reduced the ability of PACAP-38 to stimulate LH and α-subunit release and intracellular cyclic AMP levels significantly. We conclude that the stimulatory actions of PACAP on LH and α-subunit relies in part on PKC activity. Journal of Endocrinology (1992) 134, 33–41


Sign in / Sign up

Export Citation Format

Share Document