scholarly journals The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus

2020 ◽  
Vol 295 (15) ◽  
pp. 4773-4779 ◽  
Author(s):  
Calvin J. Gordon ◽  
Egor P. Tchesnokov ◽  
Joy Y. Feng ◽  
Danielle P. Porter ◽  
Matthias Götte

Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome–coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectrum of antiviral activities against RNA viruses, including severe acute respiratory syndrome–CoV and Middle East respiratory syndrome (MERS–CoV). RDV is a nucleotide analog inhibitor of RNA-dependent RNA polymerases (RdRps). Here, we co-expressed the MERS–CoV nonstructural proteins nsp5, nsp7, nsp8, and nsp12 (RdRp) in insect cells as a part a polyprotein to study the mechanism of inhibition of MERS–CoV RdRp by RDV. We initially demonstrated that nsp8 and nsp12 form an active complex. The triphosphate form of the inhibitor (RDV-TP) competes with its natural counterpart ATP. Of note, the selectivity value for RDV-TP obtained here with a steady-state approach suggests that it is more efficiently incorporated than ATP and two other nucleotide analogs. Once incorporated at position i, the inhibitor caused RNA synthesis arrest at position i + 3. Hence, the likely mechanism of action is delayed RNA chain termination. The additional three nucleotides may protect the inhibitor from excision by the viral 3′–5′ exonuclease activity. Together, these results help to explain the high potency of RDV against RNA viruses in cell-based assays.

2020 ◽  
Vol 144 (8) ◽  
pp. 920-928 ◽  
Author(s):  
David A. Schwartz ◽  
Amareen Dhaliwal

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent of coronavirus disease 2019 (COVID-19), is similar to 2 other coronaviruses, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), in causing life-threatening maternal respiratory infections and systemic complications. Because of global concern for potential intrauterine transmission of SARS-CoV-2 from pregnant women to their infants, this report analyzes the effects on pregnancy of infections caused by SARS-CoV-2 and other respiratory RNA viruses, and examines the frequency of maternal-fetal transmission with SARS-CoV-2, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), influenza, respiratory syncytial virus (RSV), parainfluenza (HPIV), and metapneumovirus (hMPV). There have been no confirmed cases of intrauterine transmission reported with SARS-CoV-2 or any other coronaviruses—SARS and MERS. Influenza virus, despite causing approximately 1 billion annual infections globally, has only a few cases of confirmed or suspected intrauterine fetal infections reported. Respiratory syncytial virus is an unusual cause of illness among pregnant women, and with the exception of 1 premature infant with congenital pneumonia, no other cases of maternal-fetal infection are described. Parainfluenza virus and hMPV can produce symptomatic maternal infections but do not cause intrauterine fetal infection. In summary, it appears that the absence thus far of maternal-fetal transmission of the SARS-CoV-2 virus during the COVID-19 pandemic is similar to other coronaviruses, and is also consistent with the extreme rarity of suggested or confirmed cases of intrauterine transmission of other respiratory RNA viruses. This observation has important consequences for pregnant women because it appears that if intrauterine transmission of SARS-CoV-2 does eventually occur, it will be a rare event. Potential mechanisms of fetal protection from maternal viral infections are also discussed.


2020 ◽  
Vol 54 (4s) ◽  
pp. 5-15
Author(s):  
Magdalene A. Odikro ◽  
Ernest Kenu ◽  
Keziah L. Malm ◽  
Franklin Asiedu-Bekoe ◽  
Charles L. Noora ◽  
...  

Coronaviruses are RNA viruses that cause respiratory, hepatic and neurological diseases in domestic and wild animals, and humans. Among humans, six species of coronavirus have been identified to cause disease. Among these, Severe Acute Respiratory Syndrome (SARS-CoV) and Middle East Respiratory Syndrome (MERS-CoV) are of zoonotic origin and have been known to cause severe acute respiratory syndrome outbreaks among humans.


Author(s):  
Sk Sarif Hassan ◽  
Atanu Moitra ◽  
Pabitra Pal Choudhury ◽  
Prasanta Pramanik ◽  
Siddhartha Jana

Coronaviruses are a large family of RNA viruses which cause respiratory infections ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS) and COVID-19. This article highlights some key findings based on a thorough scanning of genes of 470 SARS-CoV2 genomes, including the co-presence of ORF7a and ORF8 over the 251 SARS-CoV2 genomes and the absence of the gene ORF7b over the 219 SARS-CoV2 genomes collected from various countries including India.


2015 ◽  
Vol 468 (2) ◽  
pp. 215-226 ◽  
Author(s):  
Miklós Békés ◽  
Wioletta Rut ◽  
Paulina Kasperkiewicz ◽  
Monique P.C. Mulder ◽  
Huib Ovaa ◽  
...  

We compare processing proteases from two human coronaviruses - the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) hCoVs - with respect to their activities and substrate specificities for ubiquitin (Ub)-like signaling molecules, Ub and ISG15 (interferon stimulated gene 15); and doing so, we uncover a unique mode of polyUb recognition by the SARS protease.


Author(s):  
Sk Sarif Hassan ◽  
Atanu Moitra ◽  
Pabitra Pal Choudhury ◽  
Prasanta Pramanik ◽  
Siddhartha Sankar Jana

Coronaviruses are a large family of RNA viruses which cause respiratory infections ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS) and COVID-19. This article highlights some key findings based on a thorough scanning of genes of 475 SARS-CoV2 genomes, including the co-presence of ORF7a and ORF8 over the 256 SARS-CoV2 genomes and the absence of the gene ORF7b over the 219 SARS-CoV2 genomes collected from various countries including India. The presence of the gene ORF7b is found in the SARS-CoV2 genomes containing the L-type strain which is reported to having much higher virulence as compared to the S-type strain.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Diede Oudshoorn ◽  
Kevin Rijs ◽  
Ronald W. A. L. Limpens ◽  
Kevin Groen ◽  
Abraham J. Koster ◽  
...  

ABSTRACT Betacoronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV), are important pathogens causing potentially lethal infections in humans and animals. Coronavirus RNA synthesis is thought to be associated with replication organelles (ROs) consisting of modified endoplasmic reticulum (ER) membranes. These are transformed into double-membrane vesicles (DMVs) containing viral double-stranded RNA and into other membranous elements such as convoluted membranes, together forming a reticulovesicular network. Previous evidence suggested that the nonstructural proteins (nsp’s) 3, 4, and 6 of the severe acute respiratory syndrome coronavirus (SARS-CoV), which contain transmembrane domains, would all be required for DMV formation. We have now expressed MERS-CoV replicase self-cleaving polyprotein fragments encompassing nsp3-4 or nsp3-6, as well as coexpressed nsp3 and nsp4 of either MERS-CoV or SARS-CoV, to characterize the membrane structures induced. Using electron tomography, we demonstrate that for both MERS-CoV and SARS-CoV coexpression of nsp3 and nsp4 is required and sufficient to induce DMVs. Coexpression of MERS-CoV nsp3 and nsp4 either as individual proteins or as a self-cleaving nsp3-4 precursor resulted in very similar DMVs, and in both setups we observed proliferation of zippered ER that appeared to wrap into nascent DMVs. Moreover, when inactivating nsp3-4 polyprotein cleavage by mutagenesis, we established that cleavage of the nsp3/nsp4 junction is essential for MERS-CoV DMV formation. Addition of the third MERS-CoV transmembrane protein, nsp6, did not noticeably affect DMV formation. These findings provide important insight into the biogenesis of coronavirus DMVs, establish strong similarities with other nidoviruses (specifically, the arteriviruses), and highlight possible general principles in viral DMV formation. IMPORTANCE The RNA replication of positive stranded RNA viruses of eukaryotes is thought to take place at cytoplasmic membranous replication organelles (ROs). Double-membrane vesicles are a prominent type of viral ROs. They are induced by coronaviruses, such as SARS-CoV and MERS-CoV, as well as by a number of other important pathogens, yet little is known about their biogenesis. In this study, we explored the viral protein requirements for the formation of MERS-CoV- and SARS-CoV-induced DMVs and established that coexpression of two of the three transmembrane subunits of the coronavirus replicase polyprotein, nonstructural proteins (nsp’s) 3 and 4, is required and sufficient to induce DMV formation. Moreover, release of nsp3 and nsp4 from the polyprotein by proteolytic maturation is essential for this process. These findings provide a strong basis for further research on the biogenesis and functionality of coronavirus ROs and may point to more general principles of viral DMV formation. IMPORTANCE The RNA replication of positive stranded RNA viruses of eukaryotes is thought to take place at cytoplasmic membranous replication organelles (ROs). Double-membrane vesicles are a prominent type of viral ROs. They are induced by coronaviruses, such as SARS-CoV and MERS-CoV, as well as by a number of other important pathogens, yet little is known about their biogenesis. In this study, we explored the viral protein requirements for the formation of MERS-CoV- and SARS-CoV-induced DMVs and established that coexpression of two of the three transmembrane subunits of the coronavirus replicase polyprotein, nonstructural proteins (nsp’s) 3 and 4, is required and sufficient to induce DMV formation. Moreover, release of nsp3 and nsp4 from the polyprotein by proteolytic maturation is essential for this process. These findings provide a strong basis for further research on the biogenesis and functionality of coronavirus ROs and may point to more general principles of viral DMV formation.


2020 ◽  
Vol 12 (2) ◽  
pp. 156-157
Author(s):  
Mohammad Mostafa Ansari Ramandi ◽  
Mohammadreza Baay ◽  
Nasim Naderi

The disaster due to the novel coronavirus disease 2019 (COVID-19) around the world has made investigators enthusiastic about working on different aspects of COVID-19. However, although the pandemic of COVID-19 has not yet ended, it seems that COVID-19 compared to the other coronavirus infections (the Middle East Respiratory Syndrome [MERS] and Severe Acute Respiratory Syndrome [SARS]) is more likely to target the heart. Comparing the previous presentations of the coronavirus family and the recent cardiovascular manifestations of COVID-19 can also help in predicting possible future challenges and taking measures to tackle these issues.


Batoboh ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
Reza Kusuma Setyansah

Coronavirus merupakan keluarga besar virus yang menyebabkan penyakit pada manusia, biasanya menyebabkan penyakit infeksi saluran pernapasan, mulai flu biasa hingga penyakit yang serius seperti Middle East Respiratory Syndrome (MERS) dan Sindrom Pernafasan Akut Berat/ Severe Acute Respiratory Syndrome (SARS). Coronavirus jenis baru yang ditemukan pada manusia sejak kejadian luar biasa muncul di Wuhan Cina, pada Desember 2019, kemudian diberi nama Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV2), dan menyebabkan penyakit Coronavirus Disease-2019 (COVID-19). Salah satu cara gampang melakukan pencegahan terhadap penyebaran virus ini adalah dengan menggunakan Handsanitizer alami. Menurut Organisasi Kesehatan Dunia (WHO), Handsanitizer alami harus mengandung setidaknya 60% alkohol untuk bekerja secara efektif. Selain handsanitizer, dengan melalukan metode penyemprotan disenfektan menggunakan cairan disenfektan. Disenfektan merupakan bahan kimia yang berguna untuk mencegah pertumbuhan bakteri ataupun jasad renik pada permukaan benda mati. Pelaksanaan pengabdian kepada masyarakat mengadakan penyaluran handsanitizer dan sabun cuci tangan alami serta penyemprotan disenfektan di desa Ngale sebagai upaya pencegahan Covid-19. Metode dalam pelaksanaan kegiatan ini yaitu wawancara dan diskusi bersama kepala desa Ngale. Kegiatan ini diharapkan mampu menumbuhkan kesadaran pada masyarakat akan pentingnya menjaga kebersihan, salah satunya menjaga kebersihan tangan serta dapat memutus mata rantai penyebaran Covid-19 di desa Ngale Kec Pilangkenceng Kab Madiun.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-4
Author(s):  
Richard Avoi ◽  
Syed Sharizman Syed Abdul Rahim ◽  
Mohammad Saffree Jeffree ◽  
Visweswara Rao Pasupuleti

  Since the Coronavirus disease 2019 (COVID-19) pandemic unfolded in China (Huang et al., 2020) back in December 2019, thus far, more than five million people were infected with the virus and 333,401 death were recorded worldwide (WHO, 2020b). The exponential increase in number shows that COVID-19 spreads faster compared to Severe Acute Respiratory Syndrome (SARS) or Middle East Respiratory Syndrome (MERS). A study (Zou et al., 2020) has shown that high viral loads of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are detected in symptomatic patients soon after the onset of symptoms, wherein the load content is higher in their nose than in their throat. Furthermore, the same study has revealed similar viral loads between symptomatic and asymptomatic patients. Therefore, these findings may suggest the possibility of COVID-19 transmission earlier before the onset of symptoms itself. In the early stages of the pandemic, the control measures carried out have focused on screening of symptomatic person; at the time, the whole world thought that the spread of SARS-Cov-2 would only occur through symptomatic person-to-person transmission. In comparison, transmission in SARS would happen after the onset of illness, whereby the viral loads in the respiratory tract peaked around ten days after the development of symptoms by patients (Peiris et al., 2003). However, case detection for SARS (i.e. screening of symptomatic persons) will be grossly inadequate for the current COVID-19 pandemic, thus requiring different strategies to detect those infected with SARS-CoV-2 before they develop the symptoms.


2020 ◽  
Vol 7 (1) ◽  
pp. 69-77
Author(s):  
Aldonna Maria Susngi ◽  
◽  
Clara Ermine Sawian

The novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), the causative agent of Coronavirus disease 2019 (COVID-19) is a β-coronavirus, which also includes the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome Coronavirus (MERS-CoV). Emerging in December 2019 from Wuhan, China, it has spread worldwide resulting in a pandemic that has not ended till date. This review highlights some of the key features of the virology of SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document