scholarly journals Mutational Analysis of the MutH Protein fromEscherichia coli

2000 ◽  
Vol 276 (15) ◽  
pp. 12113-12119 ◽  
Author(s):  
Tamalette Loh ◽  
Kenan C. Murphy ◽  
Martin G. Marinus

Site-directed mutagenesis was performed on several areas of MutH based on the similarity of MutH andPvuII structural models. The aims were to identify DNA-binding residues; to determine whether MutH has the same mechanism for DNA binding and catalysis asPvuII; and to localize the residues responsible for MutH stimulation by MutL. No DNA-binding residues were identified in the two flexible loop regions of MutH, although similar loops inPvuII are involved in DNA binding. Two histidines in MutH are in a similar position as two histidines (His-84 and His-85) inPvuII that signal for DNA binding and catalysis. These MutH histidines (His-112 and His-115) were changed to alanines, but the mutant proteins had wild-type activity bothin vivoandin vitro. The results indicate that the MutH signal for DNA binding and catalysis remains unknown. Instead, a lysine residue (Lys-48) was found in the first flexible loop that functions in catalysis together with the three presumed catalytic amino acids (Asp-70, Glu-77, and Lys-79). Two deletion mutations (MutHΔ224 and MutHΔ214) in the C-terminal end of the protein, localized the MutL stimulation region to five amino acids (Ala-220, Leu-221, Leu-222, Ala-223, and Arg-224).

2003 ◽  
Vol 185 (20) ◽  
pp. 6205-6208 ◽  
Author(s):  
Sheena McGowan ◽  
Jennifer R. O'Connor ◽  
Jackie K. Cheung ◽  
Julian I. Rood

ABSTRACT The response regulator VirR and its cognate sensor histidine kinase, VirS, are responsible for toxin gene regulation in the human pathogen Clostridium perfringens. The C-terminal domain of VirR (VirRc) contains the functional FxRxHrS motif, which is involved in DNA binding and is conserved in many regulatory proteins. VirRc was cloned, purified, and shown by in vivo and in vitro studies to comprise an independent DNA binding domain. Random and site-directed mutagenesis was used to identify further amino acids that were required for the functional integrity of the protein. Random mutagenesis identified a unique residue, Met-172, that was required for biological function. Site-directed mutagenesis of the SKHR motif (amino acids 216 to 219) revealed that these residues were also required for biological activity. Analysis of the mutated proteins indicated that they were unable to bind to the DNA target with the same efficiency as the wild-type protein.


1987 ◽  
Author(s):  
N Haigwood ◽  
E-P Pâques ◽  
G Mullenbach ◽  
G Moore ◽  
L DesJardin ◽  
...  

The clinical relevance of tissue-plasminogen-activator (t-PA) as a potent thrombolytic agent has recently been established. It has however been recognized that t-PA does not fulfill all conditions required for an ideal thrombolytic pharmaceutical agent; for example, its physiological stability and its short half life in vivo necessitate the use of very large clinical doses. We have therefore attempted to develop novel mutant t-PA proteins with improved properties by creating mutants by site-directed mutagenesis in M13 bacteriophage. Seventeen mutants were designed, cloned, and expressed in CHO cells. Modifications were of three types: alterations to glycosylation sites, truncations of the N- or C-termini, and amino acids changes at the cleavage site utilized to generate the two chain form of t-PA. The mutant proteins were analyzed in vitro for specific activity, fibrin dependence of the plasminogen activation, fibrin affinity, and susceptibility to inhibition by PAI.In brief, the results are: 1) some unglycosylated and partially glycosylated molecules obtained by mutagenesis are characterized by several-fold higher specific activity than wild type t-PA; 2) truncation at the C-terminus by three amino acids yields a molecule with increased fibrin specificity; 3) mutations at the cleavage site lead zo a decreased inhibition by PAI; and 4) recombinants of these genes have been constructed and the proteins were shown to possess multiple improved properties. The use of site directed mutagenesis has proved to be a powerful instrument to modulate the biological properties of t-PA.


2007 ◽  
Vol 403 (2) ◽  
pp. 289-295 ◽  
Author(s):  
Yi-Chien Lin ◽  
Yan-Hwa Wu Lee ◽  
Jing-Jer Lin

Cdc13p is a specific single-stranded telomeric DNA-binding protein of Saccharomyces cerevisiae. It is involved in protecting telomeres and regulating telomere length. The telomere-binding domain of Cdc13p is located between residues 497 and 693, and its structure has been resolved by NMR spectroscopy. A series of aromatic, hydrophobic and basic residues located at the DNA-binding surface of Cdc13p are involved in binding to telomeres. Here we applied a genetic approach to analyse the involvements of these residues in telomere binding. A series of mutants within the telomere-binding domain of Cdc13p were identified that failed to complement cdc13 mutants in vivo. Among the amino acids that were isolated, the Tyr522, Arg635, and Ile633 residues were shown to locate at the DNA-binding surface. We further demonstrated that Y522C and R635A mutants failed to bind telomeric DNA in vitro, indicating that these residues are indeed required for telomere binding. We did not, however, isolate other mutant residues located at the DNA-binding surface of Cdc13p beyond these three residues. Instead, a mutant on Lys568 was isolated that did not affect the essential function of Cdc13p. The Lys568 is also located on the DNA-binding surface of Cdc13p. Thus these results suggested that other DNA-binding residues are not essential for telomere binding. In the present study, we have established a genetic test that enabled the identification of telomere-binding residues of Cdc13p in vivo. This type of analysis provides information on those residues that indeed contribute to telomere binding in vivo.


2005 ◽  
Vol 187 (12) ◽  
pp. 4127-4139 ◽  
Author(s):  
Pascale Joseph ◽  
Manoja Ratnayake-Lecamwasam ◽  
Abraham L. Sonenshein

ABSTRACT Bacillus subtilis CodY protein is the best-studied member of a novel family of global transcriptional regulators found ubiquitously in low-G+C gram-positive bacteria. As for many DNA-binding proteins, CodY appears to have a helix-turn-helix (HTH) motif thought to be critical for interaction with DNA. This putative HTH motif was found to be highly conserved in the CodY homologs. Site-directed mutagenesis was used to identify amino acids within this motif that are important for DNA recognition and binding. The effects of each mutation on DNA binding in vitro and on the regulation of transcription in vivo from two target promoters were tested. Each of the mutations had similar effects on binding to the two promoters in vitro, but some mutations had differential effects in vivo.


2002 ◽  
Vol 76 (1) ◽  
pp. 68-77 ◽  
Author(s):  
Jeffery Tuckis ◽  
Sherin Smallwood ◽  
Joyce A. Feller ◽  
Sue A. Moyer

ABSTRACT The Sendai virus P-L polymerase complex binds the NP-encapsidated nucleocapsid (NC) template through a P-NP interaction. To identify P amino acids responsible for binding we performed site-directed mutagenesis on the C-terminal 88 amino acids in the NC binding domain. The mutant P proteins expressed from plasmids were assayed for viral RNA synthesis and for various protein-protein interactions. All the mutants formed P oligomers and bound to L protein. While two mutants, JT3 and JT8, retained all P functions at or near the levels of wild-type (wt) P, three others—JT4, JT6, and JT9—were completely defective for both transcription and genome replication in vitro. Each of the inactive mutants retained significant NC binding but had a different spectrum of other binding interactions and activities, suggesting that the NC binding domain also affects the catalytic function of the polymerase. NC binding was inhibited by combinations of the inactive mutations. The remaining P mutants were active in transcription but defective in various aspects of genome replication. Some P mutants were defective in NP0 binding and abolished the reconstitution of replication from separate P-L and NP0-P complexes. In some of these cases the coexpression of the wt polymerase with the mutant NP0-P complex could rescue the defect in replication, suggesting an interaction between these complexes. For some P mutants replication occurred in vivo, but not in vitro, suggesting that the intact cell is providing an unknown function that cannot be reproduced in extracts of cells. Thus, the C-terminal region of P is complex and possesses multiple functions besides NC binding that can be separated by mutation.


2000 ◽  
Vol 182 (20) ◽  
pp. 5807-5812 ◽  
Author(s):  
Eun Hee Cho ◽  
Renato Alcaraz ◽  
Richard I. Gumport ◽  
Jeffrey F. Gardner

ABSTRACT The bacteriophage λ excisionase (Xis) is a sequence-specific DNA binding protein required for excisive recombination. Xis binds cooperatively to two DNA sites arranged as direct repeats on the phage DNA. Efficient excision is achieved through a cooperative interaction between Xis and the host-encoded factor for inversion stimulation as well as a cooperative interaction between Xis and integrase. The secondary structure of the Xis protein was predicted to contain a typical amphipathic helix that spans residues 18 to 28. Several mutants, defective in promoting excision in vivo, were isolated with mutations at positions encoding polar amino acids in the putative helix (T. E. Numrych, R. I. Gumport, and J. F. Gardner, EMBO J. 11:3797–3806, 1992). We substituted alanines for the polar amino acids in this region. Mutant proteins with substitutions for polar amino acids in the amino-terminal region of the putative helix exhibited decreased excision in vivo and were defective in DNA binding. In addition, an alanine substitution at glutamic acid 40 also resulted in altered DNA binding. This indicates that the hydrophilic face of the α-helix and the region containing glutamic acid 40 may form the DNA binding surfaces of the Xis protein.


2021 ◽  
Author(s):  
James P Bridges ◽  
Caterina Safina ◽  
Bernard Picard ◽  
Kari Brown ◽  
Alyssa Filuta ◽  
...  

The mechanistic details of the tethered agonist mode of activation for adhesion GPCRs has not been completely deciphered. We set out to investigate the physiologic importance of autocatalytic cleavage upstream of the agonistic peptide sequence, an event necessary for NTF displacement and subsequent receptor activation. To examine this hypothesis, we characterized tethered agonist-mediated activation of GPR116 in vitro and in vivo. A knock-in mouse expressing a non-cleavable GPR116 mutant phenocopies the pulmonary phenotype of GPR116 knock-out mice, demonstrating that tethered agonist-mediated receptor activation is indispensable for function in vivo. Using site-directed mutagenesis and species swapping approaches we identified key conserved amino acids for GPR116 activation in the tethered agonist sequence and in extracellular loops 2/3 (ECL2/3). We further highlight residues in transmembrane7 (TM7) that mediate stronger signaling in mouse versus human GPR116 and recapitulate these findings in a model supporting tethered agonist:ECL2 interactions for GPR116 activation.


2009 ◽  
Vol 192 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Kathy R. Claas ◽  
J. R. Parrish ◽  
L. A. Maggio-Hall ◽  
J. C. Escalante-Semerena

ABSTRACT In Salmonella enterica, the CobT enzyme activates the lower ligand base during the assembly of the nucleotide loop of adenosylcobalamin (AdoCbl) and other cobamides. Previously, mutational analysis identified a class of alleles (class M) that failed to restore AdoCbl biosynthesis during intragenic complementation studies. To learn why class M cobT mutations were deleterious, we determined the nature of three class M cobT alleles and performed in vivo and in vitro functional analyses guided by available structural data on the wild-type CobT (CobTWT) enzyme. We analyzed the effects of the variants CobT(G257D), CobT(G171D), CobT(G320D), and CobT(C160A). The latter was not a class M variant but was of interest because of the potential role of a disulfide bond between residues C160 and C256 in CobT activity. Substitutions G171D, G257D, and G320D had profound negative effects on the catalytic efficiency of the enzyme. The C160A substitution rendered the enzyme fivefold less efficient than CobTWT. The CobT(G320D) protein was unstable, and results of structure-guided site-directed mutagenesis suggest that either variants CobT(G257D) and CobT(G171D) have less affinity for 5,6-dimethylbenzimidazole (DMB) or access of DMB to the active site is restricted in these variant proteins. The reported lack of intragenic complementation among class M cobT alleles is caused in some cases by unstable proteins, and in others it may be caused by the formation of dimers between two mutant CobT proteins with residual activity that is so low that the resulting CobT dimer cannot synthesize sufficient product to keep up with even the lowest demand for AdoCbl.


1993 ◽  
Vol 13 (12) ◽  
pp. 7864-7873 ◽  
Author(s):  
B K Haarer ◽  
A S Petzold ◽  
S S Brown

We have mutated two regions within the yeast profilin gene in an effort to functionally dissect the roles of actin and phosphatidylinositol 4,5-bisphosphate (PIP2) binding in profilin function. A series of truncations was carried out at the C terminus of profilin, a region that has been implicated in actin binding. Removal of the last three amino acids nearly eliminated the ability of profilin to bind polyproline in vitro but had no dramatic in vivo effects. Thus, the extreme C terminus is implicated in polyproline binding, but the physiological relevance of this interaction is called into question. More extensive truncation, of up to eight amino acids, had in vivo effects of increasing severity and resulted in changes in conformation and expression level of the mutant profilins. However, the ability of these mutants to bind actin in vitro was not eliminated, suggesting that this region cannot be solely responsible for actin binding. We also mutagenized a region of profilin that we hypothesized might be involved in PIP2 binding. Alteration of basic amino acids in this region produced mutant profilins that functioned well in vivo. Many of these mutants, however, were unable to suppress the loss of adenylate cyclase-associated protein (Cap/Srv2p [A. Vojtek, B. Haarer, J. Field, J. Gerst, T. D. Pollard, S. S. Brown, and M. Wigler, Cell 66:497-505, 1991]), indicating that a defect could be demonstrated in vivo. In vitro assays demonstrated that the inability to suppress loss of Cap/Srv2p correlated with a defect in the interaction with actin, independently of whether PIP2 binding was reduced. Since our earlier studies of Acanthamoeba profilins suggested the importance of PIP2 binding for suppression, we conclude that both activities are implicated and that an interplay between PIP2 binding and actin binding may be important for profilin function.


2004 ◽  
Vol 186 (19) ◽  
pp. 6634-6642 ◽  
Author(s):  
Jutta Hager ◽  
Bart L. Staker ◽  
Ursula Jakob

ABSTRACT The 23S rRNA methyltransferase RrmJ (FtsJ) is responsible for the 2′-O methylation of the universally conserved U2552 in the A loop of 23S rRNA. This 23S rRNA modification appears to be critical for ribosome stability, because the absence of functional RrmJ causes the cellular accumulation of the individual ribosomal subunits at the expense of the functional 70S ribosomes. To gain insight into the mechanism of substrate recognition for RrmJ, we performed extensive site-directed mutagenesis of the residues conserved in RrmJ and characterized the mutant proteins both in vivo and in vitro. We identified a positively charged, highly conserved ridge in RrmJ that appears to play a significant role in 23S rRNA binding and methylation. We provide a structural model of how the A loop of the 23S rRNA binds to RrmJ. Based on these modeling studies and the structure of the 50S ribosome, we propose a two-step model where the A loop undocks from the tightly packed 50S ribosomal subunit, allowing RrmJ to gain access to the substrate nucleotide U2552, and where U2552 undergoes base flipping, allowing the enzyme to methylate the 2′-O position of the ribose.


Sign in / Sign up

Export Citation Format

Share Document