scholarly journals Modulation of Basic Helix-Loop-Helix Transcription Complex Formation by Id Proteins during Neuronal Differentiation

2001 ◽  
Vol 277 (11) ◽  
pp. 9118-9126 ◽  
Author(s):  
Annika Jögi ◽  
Paula Persson ◽  
Anna Grynfeld ◽  
Sven Påhlman ◽  
Håkan Axelson
2003 ◽  
Vol 23 (13) ◽  
pp. 4417-4427 ◽  
Author(s):  
Anne B. Vojtek ◽  
Jennifer Taylor ◽  
Stacy L. DeRuiter ◽  
Jenn-Yah Yu ◽  
Claudia Figueroa ◽  
...  

ABSTRACT Neural basic helix-loop-helix (bHLH) transcription factors regulate neurogenesis in vertebrates. Signaling by peptide growth factors also plays critical roles in regulating neuronal differentiation and survival. Many peptide growth factors activate phosphatidylinositol 3-kinase (PI3K) and subsequently the Akt kinases, raising the possibility that Akt may impact bHLH protein function during neurogenesis. Here we demonstrate that reducing expression of endogenous Akt1 and Akt2 by RNA interference (RNAi) reduces neuron generation in P19 cells transfected with a neural bHLH expression vector. The reduction in neuron generation from decreased Akt expression is not solely due to decreased cell survival, since addition of the caspase inhibitor z-VAD-FMK rescues cell death associated with loss of Akt function but does not restore neuron formation. This result indicates that Akt1 and Akt2 have additional functions during neuronal differentiation that are separable from neuronal survival. We show that activated Akt1 enhances complex formation between bHLH proteins and the transcriptional coactivator p300. Activated Akt1 also significantly augments the transcriptional activity of the bHLH protein neurogenin 3 in complex with the coactivators p300 or CBP. In addition, inhibition of endogenous Akt activity by the PI3K/Akt inhibitor LY294002 abolishes transcriptional cooperativity between the bHLH proteins and p300. We propose that Akt regulates the assembly and activity of bHLH-coactivator complexes to promote neuronal differentiation.


Development ◽  
2000 ◽  
Vol 127 (13) ◽  
pp. 2945-2954 ◽  
Author(s):  
A.A. Gershon ◽  
J. Rudnick ◽  
L. Kalam ◽  
K. Zimmerman

The development of the vertebrate nervous system depends upon striking a balance between differentiating neurons and neural progenitors in the early embryo. Our findings suggest that the homeodomain-containing gene Xdbx regulates this balance by maintaining neural progenitor populations within specific regions of the neuroectoderm. In posterior regions of the Xenopus embryo, Xdbx is expressed in a bilaterally symmetric stripe that lies at the middle of the mediolateral axis of the neural plate. This stripe of Xdbx expression overlaps the expression domain of the proneural basic/helix-loop-helix-containing gene, Xash3, and is juxtaposed to the expression domains of Xenopus Neurogenin related 1 and N-tubulin, markers of early neurogenesis in the embryo. Xdbx overexpression inhibits neuronal differentiation in the embryo and when co-injected with Xash3, Xdbx inhibits the ability of Xash3 to induce ectopic neurogenesis. One role of Xdbx during normal development may therefore be to restrict spatially neuronal differentiation within the neural plate, possibly by altering the neuronal differentiation function of Xash3.


1997 ◽  
Vol 272 (32) ◽  
pp. 19785-19793 ◽  
Author(s):  
Kenneth Langlands ◽  
Xiaoying Yin ◽  
Geetha Anand ◽  
Edward V. Prochownik

2020 ◽  
Vol 48 (9) ◽  
pp. 4839-4857 ◽  
Author(s):  
Miriam Wedel ◽  
Franziska Fröb ◽  
Olga Elsesser ◽  
Marie-Theres Wittmann ◽  
D Chichung Lie ◽  
...  

Abstract Development of oligodendrocytes and myelin formation in the vertebrate central nervous system is under control of several basic helix-loop-helix transcription factors such as Olig2, Ascl1, Hes5 and the Id proteins. The class I basic helix-loop-helix proteins Tcf3, Tcf4 and Tcf12 represent potential heterodimerization partners and functional modulators for all, but have not been investigated in oligodendrocytes so far. Using mouse mutants, organotypic slice and primary cell cultures we here show that Tcf4 is required in a cell-autonomous manner for proper terminal differentiation and myelination in vivo and ex vivo. Partial compensation is provided by the paralogous Tcf3, but not Tcf12. On the mechanistic level Tcf4 was identified as the preferred heterodimerization partner of the central regulator of oligodendrocyte development Olig2. Both genetic studies in the mouse as well as functional studies on enhancer regions of myelin genes confirmed the relevance of this physical interaction for oligodendrocyte differentiation. Considering that alterations in TCF4 are associated with syndromic and non-syndromic forms of intellectual disability, schizophrenia and autism in humans, our findings point to the possibility of an oligodendroglial contribution to these disorders.


Development ◽  
2000 ◽  
Vol 127 (13) ◽  
pp. 2933-2943 ◽  
Author(s):  
S. Bae ◽  
Y. Bessho ◽  
M. Hojo ◽  
R. Kageyama

We have isolated the basic helix-loop-helix (bHLH) gene Hes6, a novel member of the family of mammalian homologues of Drosophila hairy and Enhancer of split. Hes6 is expressed by both undifferentiated and differentiated cells, unlike Hes1, which is expressed only by the former cells. Hes6 alone does not bind to the DNA but suppresses Hes1 from repressing transcription. In addition, Hes6 suppresses Hes1 from inhibiting Mash1-E47 heterodimer and thereby enables Mash1 and E47 to upregulate transcription in the presence of Hes1. Furthermore, misexpression of Hes6 with retrovirus in the developing retina promotes rod photoreceptor differentiation, like Mash1, in sharp contrast to Hes1, which inhibits cell differentiation. These results suggest that Hes6 is an inhibitor of Hes1, supports Mash1 activity and promotes cell differentiation. Mutation analysis revealed that Hes1- and Hes6-specific functions are, at least in part, interchangeable by alteration of the loop region, suggesting that the loop is not simply a nonfunctional spacer but plays an important role in the specific functions.


2003 ◽  
Vol 278 (46) ◽  
pp. 45770-45776 ◽  
Author(s):  
Peter J. O'Toole ◽  
Toshiaki Inoue ◽  
Lindsay Emerson ◽  
Ian E. G. Morrison ◽  
Alan R. Mackie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document