oligodendrocyte development
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 44)

H-INDEX

54
(FIVE YEARS 4)

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Curtis M. Hay ◽  
Stacey Jackson ◽  
Stanislaw Mitew ◽  
Daniel J. Scott ◽  
Matthias Koenning ◽  
...  

Abstract Background Myelination is a highly regulated process in the vertebrate central nervous system (CNS) whereby oligodendrocytes wrap axons with multiple layers of insulating myelin in order to allow rapid electrical conduction. Establishing the proper pattern of myelin in neural circuits requires communicative axo-glial interactions, however, the molecular interactions that occur between oligodendrocytes and axons during developmental myelination and myelin maintenance remain to be fully elucidated. Our previous work identified G protein-coupled receptor 62 (Gpr62), an uncharacterized orphan g-protein coupled receptor, as being selectively expressed by mature oligodendrocytes within the CNS, suggesting a potential role in myelination or axoglial interactions. However, no studies to date have assessed the functional requirement for Gpr62 in oligodendrocyte development or CNS myelination. Methods To address this, we generated a knockout mouse strain lacking the Gpr62 gene. We assessed CNS myelination during both postnatal development and adulthood using immunohistochemistry, electron microscopy and western blot. In addition, we utilized AAV-mediated expression of a tagged Gpr62 in oligodendrocytes to determine the subcellular localization of the protein in vivo. Results We find that virally expressed Gpr62 protein is selectively expressed on the adaxonal myelin layer, suggestive of a potential role for Gpr62 in axo-myelinic signaling. Nevertheless, Gpr62 knockout mice display normal oligodendrocyte numbers and apparently normal myelination within the CNS during both postnatal development and adulthood. Conclusions We conclude that in spite of being well-placed to mediate neuronal-oligodendrocyte communications, Gpr62 is overall dispensable for CNS myelination.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mahsa Motavaf ◽  
Xianhua Piao

Perinatal white matter injury (WMI) is the most common brain injury in premature infants and can lead to life-long neurological deficits such as cerebral palsy. Preterm birth is typically accompanied by inflammation and hypoxic-ischemic events. Such perinatal insults negatively impact maturation of oligodendrocytes (OLs) and cause myelination failure. At present, no treatment options are clinically available to prevent or cure WMI. Given that arrested OL maturation plays a central role in the etiology of perinatal WMI, an increased interest has emerged regarding the functional restoration of these cells as potential therapeutic strategy. Cell transplantation and promoting endogenous oligodendrocyte function are two potential options to address this major unmet need. In this review, we highlight the underlying pathophysiology of WMI with a specific focus on OL biology and their implication for the development of new therapeutic targets.


Glia ◽  
2021 ◽  
Author(s):  
Yanchen Ma ◽  
Huiqing Liu ◽  
Zhimin Ou ◽  
Chen Qi ◽  
Rui Xing ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuta Takanezawa ◽  
Shogo Tanabe ◽  
Daiki Kato ◽  
Rie Ozeki ◽  
Masayo Komoda ◽  
...  

AbstractAutism spectrum disorders (ASD) are associated with mutations of chromodomain-helicase DNA-binding protein 8 (Chd8) and tuberous sclerosis complex 2 (Tsc2). Although these ASD-related genes are detected in glial cells such as microglia, the effect of Chd8 or Tsc2 deficiency on microglial functions and microglia-mediated brain development remains unclear. In this study, we investigated the role of microglial Chd8 and Tsc2 in cytokine expression, phagocytosis activity, and neuro/gliogenesis from neural stem cells (NSCs) in vitro. Chd8 or Tsc2 knockdown in microglia reduced insulin-like growth factor-1(Igf1) expression under lipopolysaccharide (LPS) stimulation. In addition, phagocytosis activity was inhibited by Tsc2 deficiency, microglia-mediated oligodendrocyte development was inhibited, in particular, the differentiation of oligodendrocyte precursor cells to oligodendrocytes was prevented by Chd8 or Tsc2 deficiency. These results suggest that ASD-related gene expression in microglia is involved in oligodendrocyte differentiation, which may contribute to the white matter pathology relating to ASD.


Glia ◽  
2021 ◽  
Author(s):  
Veronica. T. Cheli ◽  
Diara. A. Santiago González ◽  
Qiuchen Wan ◽  
Giancarlo Denaroso ◽  
Rensheng Wan ◽  
...  

2021 ◽  
Author(s):  
Sofia Archontidi ◽  
Corentine Marie ◽  
Beata Gyorgy ◽  
Justine Guegan ◽  
Marc Sanson ◽  
...  

Diffuse gliomas are primary brain tumors originating from the transformation of glial cells. In particular, oligodendrocyte precursor cells constitute the major tumor-amplifying population in the gliomagenic process. We previously identified the TCF12 gene, encoding a transcription factor of the E protein family, as being recurrently mutated in oligodendrogliomas. In this study, we sought to understand the function of TCF12 in oligodendroglial cells, the glioma lineage of origin. We first describe TCF12 mRNA and protein expression pattern in oligodendroglial development in the mouse brain. Second, by TCF12 genome wide chromatin profiling in oligodendroglial cells, we show that TCF12 binds active promoters of genes involved in proliferation, translation/ribosomes, and pathways involved in oligodendrocyte development and cancer. Finally, we perform OPC-specific Tcf12 inactivation in vivo and demonstrate by immunofluorescence and transcriptomic analyses that TCF12 is transiently required for OPC proliferation but dispensable for oligodendrocyte differentiation. We further show that Tcf12 inactivation results in deregulation of biological processes that are also altered in oligodendrogliomas. Together, our data suggest that TCF12 directly regulates transcriptional programs in oligodendroglia development that are relevant in a glioma context.


Sign in / Sign up

Export Citation Format

Share Document