scholarly journals Overexpression of Stra13, a novel retinoic acid-inducible gene of the basic helix-loop-helix family, inhibits mesodermal and promotes neuronal differentiation of P19 cells

1997 ◽  
Vol 11 (16) ◽  
pp. 2052-2065 ◽  
Author(s):  
M. Boudjelal ◽  
R. Taneja ◽  
S. Matsubara ◽  
P. Bouillet ◽  
P. Dolle ◽  
...  
2001 ◽  
Vol 277 (11) ◽  
pp. 9118-9126 ◽  
Author(s):  
Annika Jögi ◽  
Paula Persson ◽  
Anna Grynfeld ◽  
Sven Påhlman ◽  
Håkan Axelson

Development ◽  
2000 ◽  
Vol 127 (13) ◽  
pp. 2945-2954 ◽  
Author(s):  
A.A. Gershon ◽  
J. Rudnick ◽  
L. Kalam ◽  
K. Zimmerman

The development of the vertebrate nervous system depends upon striking a balance between differentiating neurons and neural progenitors in the early embryo. Our findings suggest that the homeodomain-containing gene Xdbx regulates this balance by maintaining neural progenitor populations within specific regions of the neuroectoderm. In posterior regions of the Xenopus embryo, Xdbx is expressed in a bilaterally symmetric stripe that lies at the middle of the mediolateral axis of the neural plate. This stripe of Xdbx expression overlaps the expression domain of the proneural basic/helix-loop-helix-containing gene, Xash3, and is juxtaposed to the expression domains of Xenopus Neurogenin related 1 and N-tubulin, markers of early neurogenesis in the embryo. Xdbx overexpression inhibits neuronal differentiation in the embryo and when co-injected with Xash3, Xdbx inhibits the ability of Xash3 to induce ectopic neurogenesis. One role of Xdbx during normal development may therefore be to restrict spatially neuronal differentiation within the neural plate, possibly by altering the neuronal differentiation function of Xash3.


Development ◽  
1992 ◽  
Vol 114 (1) ◽  
pp. 75-87 ◽  
Author(s):  
J.E. Johnson ◽  
K. Zimmerman ◽  
T. Saito ◽  
D.J. Anderson

MASH1 and MASH2, mammalian homologues of the Drosophila neural determination genes achaete-scute, are members of the basic helix-loop-helix (bHLH) family of transcription factors. We show here that murine P19 embryonal carcinoma cells can be used as a model system to study the regulation and function of these genes. MASH1 and MASH2 display complementary patterns of expression during the retinoic-acid-induced neuronal differentiation of P19 cells. MASH1 mRNA is undetectable in undifferentiated P19 cells but is induced to high levels by retinoic acid coincident with neuronal differentiation. In contrast, MASH2 mRNA is expressed in undifferentiated P19 cells and is repressed by retinoic acid treatment. These complementary expression patterns suggest distinct functions for MASH1 and MASH2 in development, despite their sequence homology. In retinoic-acid-treated P19 cells, MASH1 protein expression precedes and then overlaps expression of neuronal markers. However, MASH1 is expressed by a smaller proportion of cells than expresses such markers. MASH1 immunoreactivity is not detected in differentiated cells displaying a neuronal morphology, suggesting that its expression is transient. These features of MASH1 expression are similar to those observed in vivo, and suggest that P19 cells represent a good model system in which to study the regulation of this gene. Forced expression of MASH1 was achieved in undifferentiated P19 cells by transfection of a cDNA expression construct. The transfected cells expressing exogenous MASH1 protein contained E-box-binding activity that could be super-shifted by an anti-MASH1 antibody, but exhibited no detectable phenotypic changes. Thus, unlike myogenic bHLH genes, such as MyoD, which are sufficient to induce muscle differentiation, expression of MASH1 appears insufficient to promote neurogenesis.


2020 ◽  
Vol 21 (19) ◽  
pp. 7192
Author(s):  
Paweł Leszczyński ◽  
Magdalena Śmiech ◽  
Aamir Salam Teeli ◽  
Effi Haque ◽  
Robert Viger ◽  
...  

PRDM (PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) homologous domain-containing) transcription factors are a group of proteins that have a significant impact on organ development. In our study, we assessed the role of Prdm3 in neurogenesis and the mechanisms regulating its expression. We found that Prdm3 mRNA expression was induced during neurogenesis and that Prdm3 gene knockout caused premature neuronal differentiation of the P19 cells and enhanced the growth of non-neuronal cells. Interestingly, we found that Gata6 expression was also significantly upregulated during neurogenesis. We further studied the regulatory mechanism of Prdm3 expression. To determine the role of GATA6 in the regulation of Prdm3 mRNA expression, we used a luciferase-based reporter assay and found that Gata6 overexpression significantly increased the activity of the Prdm3 promoter. Finally, the combination of retinoic acid receptors α and β, along with Gata6 overexpression, further increased the activity of the luciferase reporter. Taken together, our results suggest that in the P19 cells, PRDM3 contributed to neurogenesis and its expression was stimulated by the synergism between GATA6 and the retinoic acid signaling pathway.


Development ◽  
2000 ◽  
Vol 127 (13) ◽  
pp. 2933-2943 ◽  
Author(s):  
S. Bae ◽  
Y. Bessho ◽  
M. Hojo ◽  
R. Kageyama

We have isolated the basic helix-loop-helix (bHLH) gene Hes6, a novel member of the family of mammalian homologues of Drosophila hairy and Enhancer of split. Hes6 is expressed by both undifferentiated and differentiated cells, unlike Hes1, which is expressed only by the former cells. Hes6 alone does not bind to the DNA but suppresses Hes1 from repressing transcription. In addition, Hes6 suppresses Hes1 from inhibiting Mash1-E47 heterodimer and thereby enables Mash1 and E47 to upregulate transcription in the presence of Hes1. Furthermore, misexpression of Hes6 with retrovirus in the developing retina promotes rod photoreceptor differentiation, like Mash1, in sharp contrast to Hes1, which inhibits cell differentiation. These results suggest that Hes6 is an inhibitor of Hes1, supports Mash1 activity and promotes cell differentiation. Mutation analysis revealed that Hes1- and Hes6-specific functions are, at least in part, interchangeable by alteration of the loop region, suggesting that the loop is not simply a nonfunctional spacer but plays an important role in the specific functions.


2004 ◽  
Vol 24 (3) ◽  
pp. 343-356 ◽  
Author(s):  
Soyeon Kim ◽  
Yong-Soo Yoon ◽  
Ji-Won Kim ◽  
Miyoung Jung ◽  
Seung-Up Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document