scholarly journals Low Temperature Dynamic Mapping Reveals Unexpected Order and Disorder in Troponin

2010 ◽  
Vol 285 (50) ◽  
pp. 38978-38986 ◽  
Author(s):  
Devanand Kowlessur ◽  
Larry S. Tobacman
2015 ◽  
Vol 233-234 ◽  
pp. 20-24 ◽  
Author(s):  
N.B. Melnikov ◽  
B.I. Reser

A simple low-temperature dynamic spin-fluctuation theory of ferromagnetic metals is developed. The theory is based on the functional integral formalism for the multiband Hubbard Hamiltonian and takes into account both single-site and nonlocal spin fluctuations. We show that our approach correctly reproduces the T3/2 law at low temperatures. The calculated results of magnetic properties for Fe and Fe0.65Ni0.35 Invar demonstrate that the approach works on a much wider temperature interval than the spin-wave approximation.


1964 ◽  
Vol 36 (3) ◽  
pp. 872-879 ◽  
Author(s):  
W. A. BARKER ◽  
MOHAN LAL NARCHAL ◽  
SUSHIL MISRA ◽  
ALBERT J. BEVOLO ◽  
FRANCIS X. HAAS ◽  
...  

2012 ◽  
Vol 735 ◽  
pp. 307-315 ◽  
Author(s):  
Jose Victoria-Hernandez ◽  
David Hernandez-Silva ◽  
Jan Bohlen ◽  
Sang Bong Yi ◽  
Dietmar Letzig

In this work, the superplastic behavior of AZ31, AZ61 and AZ80 magnesium alloys was investigated. The alloys were hydrostatically extruded at only 150 °C to get fine grained microstructures (−2, 10−3and 10−4s−1. It was found that all alloys exhibited superplasticity at 200 °C, 175 °C and 225 °C for AZ31, AZ61 and AZ80 alloys, respectively. Low temperature dynamic recrystallisation played an important role for generating a finer and homogeneous microstructure during testing which enhances the deformation behavior of the alloys at these temperatures.


1999 ◽  
Vol 86 (6) ◽  
pp. 2974-2978 ◽  
Author(s):  
Yanqiu Li ◽  
Dang Quoc Trung ◽  
Baoping Zhang ◽  
Wenxin Wang ◽  
Yusaburo Segawa ◽  
...  

2014 ◽  
Vol 599 ◽  
pp. 282-286 ◽  
Author(s):  
Chun Gang Zhang ◽  
Yan Jun Xie ◽  
Lin Chun Meng ◽  
Qin Yong Li

This paper investigated into the application of fiber-enhanced asphalt mixture in surface layer of the large longitudinal slope pavement of Xi-Sang Highway. Asphalt mixture with and without polyester fiber were used. Focus is on resistance of deformation at high temperature and flexibility at low temperature. Fiber-enhanced asphalt mixture with dynamic stability above 7000 passes/mm indicated excellent rutting resistance. The high temperature dynamic modulus of fiber-enhanced asphalt mixture was much higher than conventional SBS modified asphalt mixture. Three-point blending test result indicated that the maximum flexural strain of fiber-enhance asphalt mixture reached 4180μm/m. It was concluded that fiber-enhanced asphalt mixture was suit to be used in surface layer of the large longitudinal slope pavement of Xi-Sang Highway.


Acenaphthylene, C 12 H 8 , occurs in space group Pbam (or Pba2) at room temperatures (23 °C) with a = 7.705 (5), b = 7.865 (5), c = 14.071 (5) Å and Z = 4, and is disordered. At about 130 K it undergoes a reversible transition to space group P2 1 nm with a = 7.588 (13), b = 7.549 (10), c = 27.822 (2) Å and Z = 8 (85 K) with an ordered structure. A general study of the system has revealed that the structure of both forms consists of layers of closely packed molecules stacked in the c direction. The room temperature structure has a two-layer repeat and the low temperature form a four-layer repeat. Observation of diffuse X-ray diffraction effects at temperatures close to the transition indicates that an intermediate form having a six-layer repeat is formed. A preliminary structure determination of the low-temperature form reveals that the four layers though having a similar packing scheme differ in the orientation of the constituent molecules relative to c . It is proposed that the almost circular shape of the molecules allows each layer to change its identity under thermal agitation by a rotation of its constituent molecules in their own planes. The transition can be explained in terms of changes of the correlations between neighbouring layers. A simple model based on short-range order parameters is described, which explains the occurrence of the six-layer intermediate and the observed sequence of diffuse diffraction phenomena. The nature of the structure of the disordered room temperature form, which is predicted by this model, is confirmed as far as possible with the data available which are limited because of the dearth of high-angle diffraction maxima.


Sign in / Sign up

Export Citation Format

Share Document