Order and disorder in acenaphthylene

Acenaphthylene, C 12 H 8 , occurs in space group Pbam (or Pba2) at room temperatures (23 °C) with a = 7.705 (5), b = 7.865 (5), c = 14.071 (5) Å and Z = 4, and is disordered. At about 130 K it undergoes a reversible transition to space group P2 1 nm with a = 7.588 (13), b = 7.549 (10), c = 27.822 (2) Å and Z = 8 (85 K) with an ordered structure. A general study of the system has revealed that the structure of both forms consists of layers of closely packed molecules stacked in the c direction. The room temperature structure has a two-layer repeat and the low temperature form a four-layer repeat. Observation of diffuse X-ray diffraction effects at temperatures close to the transition indicates that an intermediate form having a six-layer repeat is formed. A preliminary structure determination of the low-temperature form reveals that the four layers though having a similar packing scheme differ in the orientation of the constituent molecules relative to c . It is proposed that the almost circular shape of the molecules allows each layer to change its identity under thermal agitation by a rotation of its constituent molecules in their own planes. The transition can be explained in terms of changes of the correlations between neighbouring layers. A simple model based on short-range order parameters is described, which explains the occurrence of the six-layer intermediate and the observed sequence of diffuse diffraction phenomena. The nature of the structure of the disordered room temperature form, which is predicted by this model, is confirmed as far as possible with the data available which are limited because of the dearth of high-angle diffraction maxima.

Author(s):  
C. Hejny ◽  
L. Bindi

K2Sc[Si2O6]F exhibits, at room temperature, a (3 + 2)-dimensional incommensurately modulated structure [a= 8.9878 (1),c= 8.2694 (2) Å,V= 668.01 (2) Å3; superspace groupP42/mnm(α,α,0)000s(−α,α,0)0000] with modulation wavevectorsq1= 0.2982 (4)(a* +b*) andq2= 0.2982 (4)(−a* +b*). Its low-temperature behaviour has been studied by single-crystal X-ray diffraction. Down to 45 K, the irrational component α of the modulation wavevectors is quite constant varying from 0.2982 (4) (RT), through 0.2955 (8) (120 K), 0.297 (1) (90 K), 0.298 (1) (75 K), to 0.299 (1) (45 K). At 25 K it approaches the commensurate value of one-third [i.e.0.332 (3)]: thus indicating that the incommensurate–commensurate phase transition takes place between 45 K and 25 K. The commensurate lock-in phase of K2Sc[Si2O6]F has been solved and refined with a 3 × 3 × 1 supercell compared with the tetragonal incommensurately modulated structure stable at room temperature. This corresponds to a 3 × 1 × 3 supercell in the pseudo-orthorhombic monoclinic setting of the low-temperature structure, space groupP2/m, with lattice parametersa= 26.786 (3),b= 8.245 (2)c= 26.824 (3) Å, β = 90.00 (1)°. The structure is a mixed tetrahedral–octahedral framework composed of chains of [ScO4F2] octahedra that are interconnected by [Si4O12] rings with K atoms in fourfold to ninefold coordination. Distorted [ScO4F2] octahedra are connected to distorted Si tetrahedra to form octagonal arrangements closely resembling those observed in the incommensurate structure of fresnoite- and melilite-type compounds.


2010 ◽  
Vol 65 (7) ◽  
pp. 907-916 ◽  
Author(s):  
Ioannis Tiritiris ◽  
Falk Lissner ◽  
Thomas Schleid ◽  
Willi Kantlehner

Dicationic N,N´,N´,N´´,N´´-pentasubstituted guanidinium dichlorides 4a, b are obtained from the chloroformamidinium salt 2 and diamines 3a, b. N-[2-(Dimethylammonio)ethyl]-N´,N´,N´´,N´´-tetramethylguanidinium chloride tetraphenylborate (5a) and N-[3-(dimethylammonio)propyl]-N´,N´,N´´,N´´-tetramethylguanidinium chloride tetraphenylborate (5b) were synthesized from 4a, b by anion metathesis with one equivalent of sodium tetraphenylborate. The thermal properties of the salts 5a, b were studied by means of DSC methods, and their crystal structures were determined by single-crystal X-ray diffraction analysis. For 5a a solid-solid phase transition is observed at −156 ◦C to a low-temperature structure. The room-temperature modification (α-5a) crystallizes in the centrosymmetric orthorhombic space group Pbca (a = 13.1844(4), b = 13.8007(4), c = 34.7537(11) A° ).The guanidinium ions are interconnected via chloride ions through bridging N-H· · ·Cl hydrogen bonds, providing isolated units. The tetraphenylborate ions show some dynamic disordering in the crystal structure. The low-temperature modification (β -5a) also crystallizes orthorhombically, but in the non-centrosymmetric space group Pna21 (a = 13.1099(4), b = 69.1810(11), c = 13.5847(5) A° ) and consists of four crystallographically independent cations and anions in the unit cell. Compared with the room-temperature structure, a similar N-H· · ·Cl hydrogen bond pattern is observed in the β -phase, but the tetraphenylborate ions are now completely ordered. 5b crystallizes in the monoclinic space group P21/c (a = 10.8010(3), b = 14.1502(5), c = 20.9867(9) A° , β = 94.322(1)◦). In the crystal structure the guanidinium ions are linked via chloride ions through N-H· · ·Cl hydrogen bonds, but in contrast to 5a two infinite strands are formed along the a axis with the tetraphenylborate ions interspersed between them for charge compensation.


1998 ◽  
Vol 54 (1) ◽  
pp. 18-28 ◽  
Author(s):  
D. L. Corker ◽  
A. M. Glazer ◽  
W. Kaminsky ◽  
R. W. Whatmore ◽  
J. Dec ◽  
...  

The room-temperature crystal structure of the perovskite lead hafnate PbHfO3 is investigated using both low-temperature single crystal X-ray diffraction (Mo Kα radiation, λ = 0.71069 Å) and polycrystalline neutron diffraction (D1A instrument, ILL, λ = 1.90788 Å). Single crystal X-ray data at 100 K: space group Pbam, a = 5.856 (1), b = 11.729 (3), c = 8.212 (2) Å, V = 564.04 Å3 with Z = 8, μ = 97.2 mm−1, F(000) = 1424, final R = 0.038, wR = 0.045 over 439 reflections with F >1.4σ(F). Polycrystalline neutron data at 383 K: a = 5.8582 (3), b = 11.7224 (5), c = 8.2246 (3) Å, V = 564.80 Å3 with χ2 = 1.62. Although lead hafnate has been thought to be isostructural with lead zirconate, no complete structure determination has been reported, as crystal structure analysis in both these materials is not straightforward. One of the main difficulties encountered is the determination of the oxygen positions, as necessary information lies in extremely weak l = 2n + 1 X-ray reflections. To maximize the intensity of these reflections the X-ray data are collected at 100 K with unusually long scans, a procedure which had previously been found successful with lead zirconate. In order to establish that no phase transitions exist between room temperature and 100 K, and hence that the collected X-ray data are relevant to the room-temperature structure, birefringence measurements for both PbZrO3 and PbHfO3 are also reported.


2005 ◽  
Vol 61 (5) ◽  
pp. 481-485 ◽  
Author(s):  
S. A. Klimin ◽  
D. Fausti ◽  
A. Meetsma ◽  
L. N. Bezmaternykh ◽  
P. H. M. van Loosdrecht ◽  
...  

A single-crystal X-ray structure study of gadolinium triiron tetraborate, GdFe_3(BO_3)_4, at room temperature and at 90 K is reported. At room temperature GdFe_3(BO_3)_4 crystallizes in a trigonal space group, R32 (No. 155), the same as found for other members of the iron borate family RFe_3(BO_3)_4. At 90 K the structure of GdFe_3(BO_3)_4 transforms to the space group P3_{1}21 (No. 152). The low-temperature structure determination gives new insight into the weakly first-order structural phase transition at 156 K and into the related Raman phonon anomalies. The presence of two inequivalent iron chains in the low-temperature structure provides a new perspective on the interpretation of the low-temperature magnetic properties.


2020 ◽  
Vol 76 (11) ◽  
pp. 1001-1004
Author(s):  
Helen E. Mason ◽  
Judith A. K. Howard ◽  
Hazel A. Sparkes

A new polymorph of (E)-4-bromo-2-[(phenylimino)methyl]phenol, C13H10BrNO, is reported, together with a low-temperature structure determination of the previously published polymorph. Both polymorphs were found to have an intramolecular O—H...N hydrogen bond between the phenol OH group and the imine N atom, forming an S(6) ring. The crystals were observed to have different colours at room temperature, with the previously published polymorph being more orange and the new polymorph more yellow. The planarity of the molecule in the two polymorphs was found to be significantly different, with dihedral angles (Φ) between the two aromatic rings for the previously published `orange' polymorph of Φ = 1.8 (2)° at 120 K, while the new `yellow' polymorph had Φ = 45.6 (1)° at 150 K. It was also observed that both polymorphs displayed some degree of thermochromism and upon cooling the `orange' polymorph became more yellow, while the `yellow' polymorph became paler upon cooling.


1996 ◽  
Vol 49 (5) ◽  
pp. 633 ◽  
Author(s):  
BN Figgis ◽  
PA Reynolds ◽  
FK Larsen ◽  
GA Williams ◽  
CD Delfs

The crystal structure of [As(C6H5)4] [TcNCl4] was determined at 120 K by X-ray diffraction and at 28 K by neutron diffraction. The crystals are tetragonal, space group P4/n, with a 1260.4(3) and c 773.2(2) pm at 120 K. The [TcNCl4]-anion possesses exact C4v symmetry, with Tc≡N distances of 160.3(2) and 162.5(4)pm at 120 and 28 K respectively. Magnetic susceptibilities were measured on single crystals from 300 to 4.5 K. The results indicate a well behaved S ½ system following the Curie-Weiss law with θ -0.13 K


2007 ◽  
Vol 22 (3) ◽  
pp. 227-230 ◽  
Author(s):  
M. S. Molokeev ◽  
A. D. Vasiliev ◽  
A. G. Kocharova

Crystal structures of (NH4)2KWO3F3 at 298 K and 113 K were solved from X-ray powder diffraction data and refined by the Rietveld technique. The compound is isostructural with elpasolite K2NaAlF6 at room temperature with space group Fm-3m, a=8.95850(5) Å, V=718.961(7) Å3, Z=4, Dx=3.363 g/cm3, and MW=364.02. The structure was refined over 18 parameters to Rwp=12.6%, Rp=10.9%, Rexp=5.03%, and RB=3.27% from 40 independent reflections. (NH4)2KWO3F3 was transformed upon cooling to a ferroelastic monoclinic phase with space group P21/n, a′=6.3072(3) Å, b′=6.3028(3) Å, c′=8.9882(3) Å, β′=90.242(2)°, V=357.30(3) Å3, Z=2, and Dx=3.383 g/cm3. The low-temperature structure at 113 K was refined over 28 parameters to Rwp=20.9%, Rp=21.3%, Rexp=12.5%, and RB=6.93% from 453 independent reflections.


1992 ◽  
Vol 47 (1-2) ◽  
pp. 65-74 ◽  
Author(s):  
Hideta Ishihara ◽  
Koichi Watanabe ◽  
Ayako Iwata ◽  
Koji Yamada ◽  
Yoshihiro Kinoshita ◽  
...  

Abstract35Cl, 81Br, 121Sb, and 209Bi NQR of the title compounds was observed. According to the results of the temperature dependences of NQR frequencies and the DTA measurements, phase transitions take place in [N(CH3)4]3Bi2Br9 (Ttr=183K), [N(CH3)4]3Bi2Cl9 (Ttr = 155K), and (CH3NH3)3Bi2Cl3 (Ttr = 200 and 249 K). 2D NMR spectra for partially deuterated (CH3ND3)3Bi,Br9 showed that the phase transitions in this compound are related to the motion of the methylammonium cations. Single-crystal X-ray work at room temperature shows that the space group for [N(CH3)4]3Sb2Cl9 is P63/mmc with a = 925.1 pm, c = 2173.4 pm, Z = 2. For (CH3NH3 ) 3Sb2Br9 the space group is P3ml with a = 818.8 pm, c = 992.7 pm, Z = 1; in both cases the cations show dynamical disorder. The Rietveld analysis of the powder X-ray diffraction for (CH3NH3)3Bi2Br9 reveals the space group P3ml with a = 821.0, c - 1000.4 pm, Z = 1 at room temperature; the compound is isomorphous with (CH3NH3 )3Sb2Br9 . The crystal symmetries of the low-temperature phases of (CH3NH3)3Bi2Br9 and [N(CH3)4]3Bi2Br9 were deduced from the results of the NQR spectroscopy


2013 ◽  
Vol 46 (3) ◽  
pp. 798-800 ◽  
Author(s):  
Wanneng Ye ◽  
Chaojing Lu ◽  
Peng You ◽  
Kun Liang ◽  
Yichun Zhou

In recent years, inconsistent space groups of monoclinicB1a1 and orthorhombicB2cbhave been reported for the room-temperature ferroelectric phases of both Bi4Ti3O12and lanthanide-substituted Bi4Ti3O12. In this article, the electron diffraction technique is employed to unambiguously clarify the crystal symmetries of ferroelectric Bi4Ti3O12and Bi3.15Nd0.85Ti3O12single crystals at room temperature. All the reflections observed from the two crystals match well with those derived fromB1a1, but the observed reflections 010, 030, {\overline 2}10 and {\overline 2}30 should be forbidden in the case ofB2cb. This fact indicates that both the ferroelectrics are of the space groupB1a1 rather thanB2cb, which is confirmed by convergent-beam electron diffraction observations. On the basis of the monoclinic space groupB1a1, the lattice parameters of both the ferroelectrics were calculated by the Rietveld refinement of powder X-ray diffraction data.


Sign in / Sign up

Export Citation Format

Share Document