scholarly journals Platelet Glycoprotein Ibβ/IX Mediates Glycoprotein Ibα Localization to Membrane Lipid Domain Critical for von Willebrand Factor Interaction at High Shear

2011 ◽  
Vol 286 (24) ◽  
pp. 21315-21323 ◽  
Author(s):  
Hongquan Geng ◽  
Guofeng Xu ◽  
Yali Ran ◽  
José A. López ◽  
Yuandong Peng
2008 ◽  
Vol 100 (07) ◽  
pp. 60-68 ◽  
Author(s):  
Zhenyue Gao ◽  
Fang Liu ◽  
Ziqiang Yu ◽  
Xia Bai ◽  
Fengyuan Zhuang ◽  
...  

SummaryThe binding of plasma von Willebrand factor (vWF) to platelet glycoprotein (GP) Ibα in a high shear stress field, and subsequent integrin-GPIIb/IIIa-vWF conjunction induces platelet aggregation (SIPA). However, the specific biomechanical mechanism of the vWF-GPIb interaction still remains to be elucidated. A parallel-plate rectangular flow chamber was built to simulate a stenopeic artery flow pattern. Using the flow chamber, we examined shear- induced platelet activation (SIPAct) at different vWF concentrations (5–25 µg/ml) and several simulated stenotic high shear rates. P-selectin expression on the platelets and annexin V binding to the platelets were used as two markers of platelet activation. At different localized shear rates (3,000 s-1–9,500 s-1), the percentage of annexin V and P-selectin positive cells increased from 8.3 ± 0.4% to 22.3 ± 1.8% ( p 0.05) and from 17.4 ± 0.5% to 33.5 ± 2.5% (p 0.05),respectively. As the vWF concentration increased from 5 µg/ml to 25 µg/ml, the annexinV binding rate increased from 7.2 ± 0.6% to 53.4 ± 3.8% (p 0.05), and P-selectin expression increased from 16.5 ± 1.2% to 65.9 ± 5.2% (p 0.05). A test in a uniform shear field using cone-plate viscometer rheometry showed that the platelet activation rate was proportional to the platelet concentration. This result suggests that platelet collision is one of the impact factors of SIPAct.


2015 ◽  
Vol 35 (03) ◽  
pp. 225-233 ◽  
Author(s):  
A. J. Reininger

SummaryThe paradigm that platelet aggregation, which contributes to bleeding arrest and also to thrombovascular disorders, initiates after signaling-induced platelet activation has been refuted in past recent years. Platelets can form aggregates independently of activation when soluble von Willebrand factor (VWF) is present and the shear rate exceeds a certain threshold where active A1 domains become exposed in soluble VWF multimers and can bind to platelet glycoprotein Ib. Subsequently – fostering each other – VWF can self-assemble into large nets combining with platelets into large conglomerates, which are entirely reversible when they enter a flow region with shear rates below the threshold. In addition the threshold changes from approximately 20 000 s-1 in wall parallel flow to approximately 10 000 s-1 in stagnation point flow. VWF containing ultra-large multimers – as when just released from endothelial storage sites – has been shown to have the highest binding potential to platelets and to each other, thus facilitating rapid platelet accrual to sites of vessel injury and exposed subendothelial structures, i.e. collagen. The VWF nets as well as the platelet-VWF conglomerates are controlled by the cleaving protease ADAMTS13 within minutes under high shear flow. Therewith the hemostatic potential is delivered where needed and the thrombogenic potential is highly controlled twofold: by flow and enzymatic proteolytic cleavage.


2012 ◽  
Vol 13 (5) ◽  
pp. 5364-5374 ◽  
Author(s):  
Weilin Zhang ◽  
Lili Zhao ◽  
Jun Liu ◽  
Juan Du ◽  
Rong Yan ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1556-1556
Author(s):  
Junmei Chen ◽  
Jody L. Whitelock ◽  
Lisa D. Morales ◽  
Jose A. Lopez ◽  
Miguel A. Cruz

Abstract Integrin α2β1 (GP Ia/IIa) is a major platelet receptor for collagen, containing its collagen binding site within the α2 I domain. α2β1 changes conformation upon platelet activation, increasing its affinity for collagen. The conformational changes are reflected in the markedly different crystal structures obtained for the α2 I domain depending on whether it is free or bound to a collagen peptide. However, it is not known whether in flowing blood α2β1 on platelets is activated before binding to collagen. To address this issue, we identified an antibody that has higher affinity for the activated α2β1. We found that two antibodies that bind within the α2 I domain, 12F1 and 6F1, bound preferentially to ADP-activated platelets, with 12F1 displaying the most marked increase in binding with activation. We corroborated this result for 12F1 by showing that it binds with higher affinity to a gain-of-function I domain mutant than to either the wild-type I domain or to a loss-of-function mutant. In addition, when whole blood was perfused over a surface coated with 12F1, the antibody did not support the adhesion of unstimulated platelets. Because thrombus formation on collagen at a high shear stress is initiated by the binding of the platelet glycoprotein Ib-IX-V complex (GP Ib) to von Willebrand factor (VWF), we tested whether this interaction can activate α2β1, using 12F1 as a probe for integrin activation. We perfused blood over a surface coated with a mixture of VWF A1 domain (a GP Ib ligand) and 12F1, or VWF A1 and mouse IgG. Platelets rolled and did not attach stably on the A1/IgG surface, but they firmly bound and covered the A1/12F1 surface. The fact that 12F1 alone failed to capture resting platelets under flow but supported firm platelet adhesion if GP Ib interacted with VWF A1 strongly suggests that GP Ib ligation by VWF induces signals that activate α2β1 and increase its affinity for collagen. The two receptors (GP Ib and α2β1) then cooperate in platelet adhesion to collagen, which was demonstrated by perfusing, at a high shear stress, reconstituted blood lacking VWF and fibrinogen over surfaces coated with collagen or A1/collagen. The A1/collagen surface contained more firmly adherent platelets than the collagen surface; firm adhesion was blocked by 6F1. We then tested whether the signals from GP Ib and α2β1 cooperate to fully activate platelets and allow thrombus growth. For this, we perfused whole blood over a mixed matrix of A1 and the α2β1-specific type I collagen-derived triple-helical peptide, CP10. We observed that platelets not only firmly adhered to this surface, they also formed thrombi, similar to those seen on collagen surfaces. Thrombus formation was inhibited by either the αIIbβ3 antibodies or blocking the A1/CP10 surface with the recombinant α2 I domain. Together, our data indicate that platelets adhere to collagen in a stepwise fashion, beginning with the interaction of GP Ib with VWF, which rapidly activates α2β1 to engage collagen. The combination of adhesive ligand-receptor interactions induces the activation of integrin αIIbβ3, which enables thrombus formation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1144-1144
Author(s):  
D'Andra Parker ◽  
Subia Tasneem ◽  
Nola Fuller ◽  
J. Evan Sadler ◽  
Philip G de Groot ◽  
...  

Abstract Abstract 1144 Introduction: Multimerin 1 (MMRN1) is a massive variably-sized homopolymeric protein that is stored in platelet and endothelial cell secretion granules, for release with vascular injury. Recently, MMRN1 was identified to support platelet adhesion in vitro and in vivo. At high shear, MMRN1 supports platelet adhesion by a von Willebrand factor (VWF)-dependent, but integrin-independent mechanism, involving platelet glycoprotein (GP) Ibα. Direct binding of MMRN1 to GP Ibα has not been demonstrated. These data led us to postulate that VWF binds MMRN1 at site(s) distinct from the GP Ibα binding site, and test the roles of VWF A domains in MMRN1 binding. Methods: Modified enzyme linked immunosorbent assays (ELISA) and surface plasmon resonance (SPR) were used to assess binding interactions between wildtype (WT) MMRN1 and WT or domain deleted VWF constructs, and VWF polypeptides. Protein constructs tested included: multimeric VWF deletion constructs ΔA1A2A3-VWF, ΔA1A3-VWF, and ΔA1-VWF, and monomeric VWF polypeptides A1A2A3, A1A2, A1 and A3. Bovine serum albumin (BSA) coated surfaces were used as the negative control. Results: Unlike WT-VWF, VWF lacking the A domains (ΔA1A2A3-VWF) or the combination of the A1 and A3 domains (ΔA1A3-VWF) did not detectably bind to MMRN1 (p < 0.001). VWF lacking the A1 domain (ΔA1-VWF) showed MMRN1 binding comparable to WT-VWF (p = 0.39), excluding the possibility that MMRN1 binding site is located in VWF A1 domain (the region that binds GP Ibα). VWF polypeptides A1A2A3, A1A2 and A3 bound to MMRN1 (p < 0.001), unlike the VWF polypeptide A1 (p = 0.137), although the A1A2 polypeptide showed reduced binding compared to A1A2A3 (p < 0.001). SPR analyses confirmed that MMRN1 binding was supported by VWF peptides containing the A3 and/or A2 domains. Conclusions: The regions of VWF that support MMRN1 includes the A3, and possibly A2 domains, which respectively contain binding sites for collagen and ADAMTS-13. Our data suggest that the mechanism by which GP Ibα and VWF support platelet adhesion to MMRN1 at high shear include: VWF binding to GP Ibα via the A1 domain, and to MMRN1 via the A3 and possibly A2 domains. These findings have implications for the molecular mechanisms that support platelet adhesion at sites of vessel injury. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 287 (12) ◽  
pp. 9461-9472 ◽  
Author(s):  
Katleen Broos ◽  
Mieke Trekels ◽  
Rani Alphonsa Jose ◽  
Jonas Demeulemeester ◽  
Aline Vandenbulcke ◽  
...  

1990 ◽  
Vol 64 (02) ◽  
pp. 326-332 ◽  
Author(s):  
J P Girma ◽  
Y Takahashi ◽  
A Yoshioka ◽  
J Diaz ◽  
D Meyer

SummaryWe have evidence that ristocetin and botrocetin mediate binding of von Willebrand Factor (vWF) to platelet glycoprotein lb (GPIb) through two distinct domains on the vWF molecule. This was established by using monoclonal antibodies (MAbs) to vWF and synthetic peptides derived from the sequence of vWF. MAb 322 and MAb NMC/vW 4 both recognize native vWF as well as fragments containing the GPIb-binding domain of vWF, obtained with the following enzymes: trypsin (116 kDa), V-8 pro tease (Spill, 320 kDa) and V-8 protease plus subtilisin (33-28 kDa). Nevertheless, the lack of reciprocal displacement between the two MAbs in experiments of competitive inhibition for binding to vWF demonstrate that their respective epitopes are separate. Both MAbs inhibit 125I-vWF binding to platelet membrane GPIb and vWF-dependent platelet agglutination induced by ristocetin. However, only MAb NMC/vW4 inhibits these functions in the presence of botrocetin and when ristocetin-induced platelet agglutination is inhibited by MAb 322, botrocetin is still able to restore the agglutination. The involvement of two distinct domains of vWF for binding to GPIb in the presence of ristocetin or botrocetin was confirmed in experiments of binding of 125I-vWF to platelets using as competitor synthetic peptides corresponding to the GPIb binding domain of vWF (Cys 474 to Pro 488 and Ser 692 to Pro 708). At a final concentration of 2.5 mM both peptides inhibit more than 90% of the binding of vWF to ristocetin-treated platelets but are unable to modify this binding in the presence of botrocetin. In conclusion our data suggest that botrocetin and ristocetin involve distinct sites on vWF for binding to GPIb.


1992 ◽  
Vol 68 (04) ◽  
pp. 464-469 ◽  
Author(s):  
Y Fujimura ◽  
S Miyata ◽  
S Nishida ◽  
S Miura ◽  
M Kaneda ◽  
...  

SummaryWe have recently shown the existence of two distinct forms of botrocetin (one-chain and two-chain), and demonstrated that the two-chain species is approximately 30 times more active than the one-chain in promoting von Willebrand factor (vWF) binding to platelet glycoprotein (GP) Ib. The N-terminal sequence of two-chain botrocetin is highly homologous to sea-urchin Echinoidin and other Ca2+-dependent lectins (Fujimura et al., Biochemistry 1991; 30: 1957–64).Present data indicate that purified two-chain botrocetin binds to vWF from plasmas of patients with type IIA or IIB von Willebrand disease and its interaction is indistinguishable from that with vWF from normal individuals. However, an “activated complex” formed between botrocetin and IIB vWF expresses an enhanced biological activity for binding to GP Ib whereas the complex with IIA vWF has a decreased binding activity. Among several anti-vWF monoclonal antibodies (MoAbs) which inhibit ristocetin-induced platelet aggregation and/or vWF binding to GPIb, only two MoAbs (NMC-4 and RFF-VIII RAG:1) abolished direct binding between purified botrocetin and vWF. This suggests that they recognize an epitope(s) on the vWF molecule in close proximity to the botrocetin binding site.


1996 ◽  
Vol 75 (04) ◽  
pp. 655-660 ◽  
Author(s):  
Mario Mazzucato ◽  
Luigi De Marco ◽  
Paola Pradella ◽  
Adriana Masotti ◽  
Francesco I Pareti

SummaryPorcine von Willebrand factor (P-vWF) binds to human platelet glycoprotein (GP) lb and, upon stirring (1500 rpm/min) at 37° C, induces, in a dose-dependent manner, a transmembrane flux of Ca2+ ions and platelet aggregation with an increase in their intracellular concentration. The inhibition of P-vWF binding to GP lb, obtained with anti GP lb monoclonal antibody (LJ-Ib1), inhibits the increase of intracellular Ca2+ concentration ([Ca2+]i) and platelet aggregation. This effect is not observed with LJ-Ib10, an anti GP lb monoclonal antibody which does not inhibit the vWF binding to GP lb. An anti GP Ilb-IIIa monoclonal antibody (LJ-CP8) shown to inhibit the binding of both vWF and fibrinogen to the GP IIb-IIIa complex, had only a slight effect on the [Ca2+]i rise elicited by the addition of P-vWF. No inhibition was also observed with a different anti GP IIb-IIIa monoclonal antibody (LJ-P5), shown to block the binding of vWF and not that of fibrinogen to the GP IIb-IIIa complex. PGE1, apyrase and indomethacin show a minimal effect on [Ca2+]i rise, while EGTA completely blocks it. The GP lb occupancy by recombinant vWF fragment rvWF445-733 completely inhibits the increase of [Ca2+]i and large aggregates formation. Our results suggest that, in analogy to what is seen with human vWF under high shear stress, the binding of P-vWF to platelet GP lb, at low shear stress and through the formation of aggregates of an appropriate size, induces a transmembrane flux of Ca2+, independently from platelet cyclooxy-genase metabolism, perhaps through a receptor dependent calcium channel. The increase in [Ca2+]i may act as an intracellular message and cause the activation of the GP IIb-IIIa complex.


Sign in / Sign up

Export Citation Format

Share Document