scholarly journals Phosphomimetic Substitution of Heterogeneous Nuclear Ribonucleoprotein A1 at Serine 199 Abolishes AKT-dependent Internal Ribosome Entry Site-transacting Factor (ITAF) Function via Effects on Strand Annealing and Results in Mammalian Target of Rapamycin Complex 1 (mTORC1) Inhibitor Sensitivity

2011 ◽  
Vol 286 (18) ◽  
pp. 16402-16413 ◽  
Author(s):  
Jheralyn Martin ◽  
Janine Masri ◽  
Cheri Cloninger ◽  
Brent Holmes ◽  
Nicholas Artinian ◽  
...  

The relative activity of the AKT kinase has been demonstrated to be a major determinant of sensitivity of tumor cells to mammalian target of rapamycin (mTOR) complex 1 inhibitors. Our previous studies have shown that the multifunctional RNA-binding protein heterogeneous nuclear ribonucleoprotein (hnRNP) A1 regulates a salvage pathway facilitating internal ribosome entry site (IRES)-dependent mRNA translation of critical cellular determinants in an AKT-dependent manner following mTOR inhibitor exposure. This pathway functions by stimulating IRES-dependent translation in cells with relatively quiescent AKT, resulting in resistance to rapamycin. However, the pathway is repressed in cells with elevated AKT activity, rendering them sensitive to rapamycin-induced G1 arrest as a result of the inhibition of global eIF-4E-mediated translation. AKT phosphorylation of hnRNP A1 at serine 199 has been demonstrated to inhibit IRES-mediated translation initiation. Here we describe a phosphomimetic mutant of hnRNP A1 (S199E) that is capable of binding both the cyclin D1 and c-MYC IRES RNAs in vitro but lacks nucleic acid annealing activity, resulting in inhibition of IRES function in dicistronic mRNA reporter assays. Utilizing cells in which AKT is conditionally active, we demonstrate that overexpression of this mutant renders quiescent AKT-containing cells sensitive to rapamycin in vitro and in xenografts. We also demonstrate that activated AKT is strongly correlated with elevated Ser(P)199-hnRNP A1 levels in a panel of 22 glioblastomas. These data demonstrate that the phosphorylation status of hnRNP A1 serine 199 regulates the AKT-dependent sensitivity of cells to rapamycin and functionally links IRES-transacting factor annealing activity to cellular responses to mTOR complex 1 inhibition.

2007 ◽  
Vol 18 (12) ◽  
pp. 5048-5059 ◽  
Author(s):  
Anne Cammas ◽  
Frédéric Pileur ◽  
Sophie Bonnal ◽  
Stephen M. Lewis ◽  
Nicolas Lévêque ◽  
...  

Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is a nucleocytoplasmic shuttling protein that regulates gene expression through its action on mRNA metabolism and translation. The cytoplasmic redistribution of hnRNP A1 is a regulated process during viral infection and cellular stress. Here, we show that hnRNP A1 is an internal ribosome entry site (IRES) trans-acting factor that binds specifically to the 5′ untranslated region of both the human rhinovirus-2 and the human apoptotic peptidase activating factor 1 (apaf-1) mRNAs, thereby regulating their translation. Furthermore, the cytoplasmic redistribution of hnRNP A1 after rhinovirus infection leads to enhanced rhinovirus IRES-mediated translation, whereas the cytoplasmic relocalization of hnRNP A1 after UVC irradiation limits the UVC-triggered translational activation of the apaf-1 IRES. Therefore, this study provides a direct demonstration that IRESs behave as translational enhancer elements regulated by specific trans-acting mRNA binding proteins in given physiological conditions. Our data highlight a new way to regulate protein synthesis in eukaryotes through the subcellular relocalization of a nuclear mRNA-binding protein.


2004 ◽  
Vol 24 (15) ◽  
pp. 6861-6870 ◽  
Author(s):  
Mauro Costa-Mattioli ◽  
Yuri Svitkin ◽  
Nahum Sonenberg

ABSTRACT Translation of poliovirus and hepatitis C virus (HCV) RNAs is initiated by recruitment of 40S ribosomes to an internal ribosome entry site (IRES) in the mRNA 5′ untranslated region. Translation initiation of these RNAs is stimulated by noncanonical initiation factors called IRES trans-activating factors (ITAFs). The La autoantigen is such an ITAF, but functional evidence for the role of La in poliovirus and HCV translation in vivo is lacking. Here, by two methods using small interfering RNA and a dominant-negative mutant of La, we demonstrate that depletion of La causes a dramatic reduction in poliovirus IRES function in vivo. We also show that 40S ribosomal subunit binding to HCV and poliovirus IRESs in vitro is inhibited by a dominant-negative form of La. These results provide strong evidence for a function of the La autoantigen in IRES-dependent translation and define the step of translation which is stimulated by La.


2008 ◽  
Vol 89 (4) ◽  
pp. 994-999 ◽  
Author(s):  
Ming Xiao ◽  
Yan Bai ◽  
Hui Xu ◽  
Xiaolu Geng ◽  
Jun Chen ◽  
...  

A full-length NS3 (NS3F) and a truncated NS3 protein (NS3H) with an RNA helicase domain possess RNA helicase activity. Using an in vitro system with a monocistronic reporter RNA or DNA, containing the CSFV 5′-UTR, we observed that both NS3F and NS3H enhanced internal ribosome entry site (IRES)-mediated and cellular translation in a dose-dependent manner, but NS3 protease (NS3P) that lacks a helicase domain did not. NS3F was stronger than NS3H in promoting both translations. These results showed that viral RNA helicase could promote viral and cellular translation, and higher RNA helicase activity might be more efficient. The NS5B protein, the viral replicase, did not significantly affect the IRES-directed or cellular translation alone. NS5B significantly enhanced the stimulative effect of NS3F on both IRES-mediated and cellular translation, but did not affect that of NS3H or NS3P. This suggests that NS5B and NS3 interact via the protease domain during the enhancement of translation.


1999 ◽  
Vol 73 (2) ◽  
pp. 1219-1226 ◽  
Author(s):  
Jun Sasaki ◽  
Nobuhiko Nakashima

ABSTRACT AUG-unrelated translation initiation was found in an insect picorna-like virus, Plautia stali intestine virus (PSIV). The positive-strand RNA genome of the virus contains two nonoverlapping open reading frames (ORFs). The capsid protein gene is located in the 3′-proximal ORF and lacks an AUG initiation codon. We examined the translation mechanism and the initiation codon of the capsid protein gene by using various dicistronic and monocistronic RNAs in vitro. The capsid protein gene was translated cap independently in the presence of the upstream cistron, indicating that the gene is translated by internal ribosome entry. Deletion analysis showed that the internal ribosome entry site (IRES) consisted of approximately 250 bases and that its 3′ boundary extended slightly into the capsid-coding region. The initiation codon for the IRES-mediated translation was identified as the CUU codon, which is located just upstream of the 5′ terminus of the capsid-coding region by site-directed mutagenesis. In vitro translation assays of monocistronic RNAs lacking the 5′ part of the IRES showed that this CUU codon was not recognized by scanning ribosomes. This suggests that the PSIV IRES can effectively direct translation initiation without stable codon-anticodon pairing between the initiation codon and the initiator methionyl-tRNA.


1993 ◽  
Vol 13 (5) ◽  
pp. 2993-3001
Author(s):  
A Mayeda ◽  
D M Helfman ◽  
A R Krainer

The essential splicing factor SF2/ASF and the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) modulate alternative splicing in vitro of pre-mRNAs that contain 5' splice sites of comparable strengths competing for a common 3' splice site. Using natural and model pre-mRNAs, we have examined whether the ratio of SF2/ASF to hnRNP A1 also regulates other modes of alternative splicing in vitro. We found that an excess of SF2/ASF effectively prevents inappropriate exon skipping and also influences the selection of mutually exclusive tissue-specific exons in natural beta-tropomyosin pre-mRNA. In contrast, an excess of hnRNP A1 does not cause inappropriate exon skipping in natural constitutively or alternatively spliced pre-mRNAs. Although hnRNP A1 can promote alternative exon skipping, this effect is not universal and is dependent, e.g., on the size of the internal alternative exon and on the strength of the polypyrimidine tract in the preceding intron. With appropriate alternative exons, an excess of SF2/ASF promotes exon inclusion, whereas an excess of hnRNP A1 causes exon skipping. We propose that in some cases the ratio of SF2/ASF to hnRNP A1 may play a role in regulating alternative splicing by exon inclusion or skipping through the antagonistic effects of these proteins on alternative splice site selection.


2009 ◽  
Vol 61 (2) ◽  
pp. 205-212
Author(s):  
Snezana Jovanovic-Cupic ◽  
Jasmina Simonovic-Babic ◽  
Jelena Blagojevic ◽  
Milena Bozic ◽  
Rada Jesic ◽  
...  

Different types of interferon are widely used to treat hepatitis C virus (HCV) infection. Results obtained in vitro suggest that interferon inhibits internal ribosome entry site (IRES)-mediated translation of the HCV genome. To elucidate the possible effect of the nucleotide sequence of IRES on therapy outcome, we compared HCV isolates from patients with sustained response and non-response to interferon/ribavirin combination therapy. In 56 analyzed HCV isolates, nucleotide changes appeared strictly in the stem-loop IIIb region, the stem part from 243 nt to 248 nt, and the polypyrimidine-II region. The natural sequence variability of IRES in isolates of genotype 3a was significantly higher than in isolates of genotype 1b (p < 0.05). The average number of nucleotide changes in genotype 3a correlated with response to therapy (p < 0.05).


Sign in / Sign up

Export Citation Format

Share Document