scholarly journals β-Arrestin2 Is Critically Involved in CXCR4-mediated Chemotaxis, and This Is Mediated by Its Enhancement of p38 MAPK Activation

2002 ◽  
Vol 277 (51) ◽  
pp. 49212-49219 ◽  
Author(s):  
Yue Sun ◽  
Zhijie Cheng ◽  
Lan Ma ◽  
Gang Pei

Chemotaxis mediated by chemokine receptors such as CXCR4 plays a key role in lymphocyte homing and hematopoiesis as well as in breast cancer metastasis. We have demonstrated previously that β-arrestin2 functions to attenuate CXCR4-mediated G protein activation and to enhance CXCR4 internalization. Here we show further that the expression of β-arrestin2 in both HeLa and human embryonic kidney 293 cells significantly enhances the chemotactic efficacy of stromal cell-derived factor 1α, the specific agonist of CXCR4, whereas the suppression of β-arrestin2 endogenous expression by antisense or RNA-mediated interference technology considerably attenuates stromal cell-derived factor 1α-induced cell migration. Expression of β-arrestin2 also augmented chemokine receptor CCR5-mediated but not epidermal growth factor receptor-mediated chemotaxis, indicating the specific effect of β-arrestin2. Further analysis reveals that expression of β-arrestin2 strengthened CXCR4-mediated activation of both p38 MAPK and ERK, and the suppression of β-arrestin2 expression blocked the activation of two kinases. Interestingly, inhibition of p38 MAPK activation (but not ERK activation) by its inhibitors or by expression of a dominant-negative mutant of p38 MAPK effectively blocked the chemotactic effect of β-arrestin2. Expression of a dominant-negative mutant of ASK1 also exerted the similar blocking effect. The results of our study suggest that β-arrestin2 can function not only as a regulator of CXCR4 signaling but also as a mediator of stromal cell-derived factor 1α-induced chemotaxis and that this activity probably occurs via the ASK1/p38 MAPK pathway.

2001 ◽  
Vol 114 (8) ◽  
pp. 1579-1589 ◽  
Author(s):  
M. Reyes-Reyes ◽  
N. Mora ◽  
A. Zentella ◽  
C. Rosales

Integrin-mediated signals play an important but poorly understood role in regulating many leukocyte functions. In monocytes and monocytic leukemia cells, (β)1 integrin-mediated adhesion results in a strong induction of immediate-early genes that are important in inflammation. To investigate the signaling pathways from integrins in monocytic cells, THP-1 cells were stimulated via (β)1 integrins by binding to fibronectin and by crosslinking the integrins with specific monoclonal antibodies. The involvement of MAPK and PI 3-K on nuclear factor (κ)B (NF-(κ)B) activation was then analyzed. We found that integrins activated both NF-(κ)B and MAPK in a PI 3-K-dependent manner, as wortmannin and LY294002 blocked these responses. However, the specific MEK inhibitor PD98059 did not prevent integrin-mediated NF-(κ)B activation. In contrast, a dominant negative mutant of Rac completely prevented NF-(κ)B activation, but it did not affect MAPK activation. These results indicate that integrin signaling to NF-(κ)B is not mediated by the MAPK pathway, but rather by the small GTPase Rac. In addition, a dominant negative form of Ρ augmented NF-(κ)B activation and blocked MAPK activation, implying that these two pathways are in competition with each other. These data suggest that integrins activate different signaling pathways in monocytic cells. One uses PI 3-K and Rac to activate NF-(κ)B, while the other uses PI 3-K, MEK, and MAPK to activate other nuclear factors, such as Elk-1.


2001 ◽  
Vol 280 (3) ◽  
pp. F495-F504 ◽  
Author(s):  
Beek Yoke Chin ◽  
Amir Mohsenin ◽  
Su Xia Li ◽  
Augustine M. K. Choi ◽  
Mary E. Choi

Transforming growth factor-β1(TGF-β1) is a potent inducer of extracellular matrix protein synthesis and a key mediator of renal fibrosis. However, the intracellular signaling mechanisms by which TGF-β1stimulates this process remain incompletely understood. In this report, we examined the role of a major stress-activated intracellular signaling cascade, belonging to the mitogen-activated protein kinase (MAPK) superfamily, in mediating TGF-β1 responses in rat glomerular mesangial cells, using dominant-negative inhibition of TGF-β1 signaling receptors. We first stably transfected rat glomerular mesangial cells with a kinase-deleted mutant TGF-β type II receptor (TβR-IIM) designed to inhibit TGF-β1 signaling in a dominant-negative fashion. Next, expression of TβR-IIM mRNA was confirmed by Northern analysis. Cell surface expression and ligand binding of TβR-IIM protein were demonstrated by affinity cross-linking with 125I-labeled-TGF-β1. TGF-β1 rapidly induced p38 MAPK phosphorylation in wild-type and empty vector (pcDNA3)-transfected control mesangial cells. Interestingly, transfection with dominant-negative TβR-IIM failed to block TGF-β1-induced p38 MAPK phosphorylation. Moreover, dominant-negative TβR-IIMfailed to block TGF-β1-stimulated pro-α1(I) collagen mRNA expression and cellular protein synthesis, whereas TGF-β1-induced extracellular signal-regulated kinase (ERK) 1/ERK2 activation and antiproliferative responses were blocked by TβR-IIM. In the presence of a specific inhibitor of p38 MAPK, SB-203580, TGF-β1 was unable to stimulate pro-α1(I) collagen mRNA expression in the control and TβR-IIM-transfected mesangial cells. Finally, we confirmed that both p38 MAPK activation and pro-α1(I) collagen stimulation were TGF-β1 effects that were abrogated by dominant-negative inhibition of TGF-β type I receptor. Thus we show first demonstration of p38 MAPK activation by TGF-β1 in mesangial cells, and, given the rapid kinetics, this TGF-β1 effect is likely a direct one. Furthermore, our findings suggest that the p38 MAPK pathway functions as a component in the signaling of pro-α1(I) collagen induction by TGF-β1 in mesangial cells.


2007 ◽  
Vol 292 (3) ◽  
pp. H1269-H1277 ◽  
Author(s):  
Ken-ichi Watanabe ◽  
Meilei Ma ◽  
Ken-ichi Hirabayashi ◽  
Narasimman Gurusamy ◽  
Punniyakoti T. Veeraveedu ◽  
...  

It is generally believed that a mechanical signal initiates a cascade of biological events leading to coordinated cardiac remodeling. 14-3-3 family members are dimeric phosphoserine-binding proteins that regulate signal transduction, apoptotic, and checkpoint control pathways. To evaluate the molecular mechanism underlying swimming stress-induced cardiac remodeling, we examined the role of 14-3-3 protein and MAPK pathway by pharmacological and genetic means using transgenic mice with cardiac-specific expression of dominant-negative (DN) mutants of 14-3-3 (DN 14-3-3/TG) and p38α/β MAPK (DNp38α and DNp38β) mice. p38 MAPK activation was earlier, more marked, and longer in the myocardium of the TG group compared with that of the nontransgenic (NTG) group after swimming stress, whereas JNK activation was detected on day 5 and decreased afterward. In contrast, ERK1/2 was not activated after swimming stress in either group. Cardiomyocyte apoptosis, cardiac hypertrophy, and fibrosis were greatly increased in the TG group compared with those in the NTG group. Moreover, we found a significant correlation between p38 MAPK activation and apoptosis in the TG group. Furthermore, DN 14-3-3 hearts showed enhanced atrial natriuretic peptide expression. In contrast, DNp38α and DNp38β mice exhibited reduced mortality and increased resistance to cardiac remodeling after 28 days of swimming stress compared with TG and NTG mice. Besides, treatment with a p38 MAPK inhibitor, FR-167653, resulted in regression of cardiac hypertrophy and fibrosis and improvement in the survival rate in the TG group. These results indicate for the first time that 14-3-3 protein along with p38 MAPK plays a crucial role in left ventricular remodeling associated with swimming stress.


2000 ◽  
Vol 192 (7) ◽  
pp. 1015-1026 ◽  
Author(s):  
Sophie Brouard ◽  
Leo E. Otterbein ◽  
Josef Anrather ◽  
Edda Tobiasch ◽  
Fritz H. Bach ◽  
...  

Heme oxygenase 1 (HO-1) inhibits apoptosis by regulating cellular prooxidant iron. We now show that there is an additional mechanism by which HO-1 inhibits apoptosis, namely by generating the gaseous molecule carbon monoxide (CO). Overexpression of HO-1, or induction of HO-1 expression by heme, protects endothelial cells (ECs) from apoptosis. When HO-1 enzymatic activity is blocked by tin protoporphyrin (SnPPIX) or the action of CO is inhibited by hemoglobin (Hb), HO-1 no longer prevents EC apoptosis while these reagents do not affect the antiapoptotic action of bcl-2. Exposure of ECs to exogenous CO, under inhibition of HO-1 activity by SnPPIX, substitutes HO-1 in preventing EC apoptosis. The mechanism of action of HO-1/CO is dependent on the activation of the p38 mitogen-activated protein kinase (MAPK) signaling transduction pathway. Expression of HO-1 or exposure of ECs to exogenous CO enhanced p38 MAPK activation by TNF-α. Specific inhibition of p38 MAPK activation by the pyridinyl imidazol SB203580 or through overexpression of a p38 MAPK dominant negative mutant abrogated the antiapoptotic effect of HO-1. Taken together, these data demonstrate that the antiapoptotic effect of HO-1 in ECs is mediated by CO and more specifically via the activation of p38 MAPK by CO.


2001 ◽  
Vol 277 (7) ◽  
pp. 4609-4617 ◽  
Author(s):  
Hiroshi Miyamoto ◽  
Mujib Rahman ◽  
Hiroshi Takatera ◽  
Hong-Yo Kang ◽  
Shuyuan Yeh ◽  
...  

2002 ◽  
Vol 365 (1) ◽  
pp. 133-145 ◽  
Author(s):  
Nadine CHOUINARD ◽  
Kristoffer VALERIE ◽  
Mahmoud ROUABHIA ◽  
Jacques HUOT

Human keratinocytes respond to UV rays by developing a fast adaptive response that contributes to maintaining their functions and survival. We investigated the role of the mitogen-activated protein kinase pathways in transducing the UV signals in normal human keratinocytes. We found that UVA, UVB or UVC induced a marked and persistent activation of p38, whereas c-Jun N-terminal kinase or extracellular signal-regulated kinase were less or not activated respectively. Inhibition of p38 activity by expression of a dominant-negative mutant of p38 or with SB203580 impaired cell viability and led to an increase in UVB-induced apoptosis. This sensitization to apoptosis was independent of caspase activities. Inhibition of p38 did not sensitize transformed HaCaT keratinocytes to UVB-induced apoptosis. In normal keratinocytes, expression of a dominant-negative mutant of p53 increased UVB-induced cell death, pointing to a role for p53. In these cells, UVB triggered a p38-dependent phosphorylation of p53 on Ser-15. This phosphorylation was associated with an SB203580-sensitive accumulation of p53, even in the presence of a serine phosphatase inhibitor. Accumulated p53 was localized mainly in the cytoplasm, independently of CRM1 nuclear export. In HaCaT cells, p53 was localized exclusively in the nucleus and its distribution and level were not affected by UVB or p38 inhibition. However, UVB induced an SB203580-insensitive phosphorylation on Ser-15 of mutated p53. Overall, our results suggest that, in normal human keratinocytes, protection against UVB depends on p38-mediated phosphorylation and stabilization of p53 and is tightly associated with the cytoplasmic sequestration of wild-type p53. We conclude that the p38/p53 pathway plays a key role in the adaptive response of normal human keratinocytes against UV stress.


Sign in / Sign up

Export Citation Format

Share Document