scholarly journals Destabilization of the Colicin E9 Endonuclease Domain by Interaction with Negatively Charged Phospholipids

2004 ◽  
Vol 279 (21) ◽  
pp. 22145-22151 ◽  
Author(s):  
Khédidja Mosbahi ◽  
Daniel Walker ◽  
Edward Lea ◽  
Geoffrey R. Moore ◽  
Richard James ◽  
...  
1999 ◽  
Vol 8 (8) ◽  
pp. 1711-1713 ◽  
Author(s):  
Jonathan P. Hannan ◽  
Sara B.-M. Whittaker ◽  
Sharon L. Davy ◽  
Ulrike C. Kühlmann ◽  
Ansgar J. Pommer ◽  
...  

1998 ◽  
Vol 333 (1) ◽  
pp. 183-191 ◽  
Author(s):  
Caitríona A. DENNIS ◽  
Hortense VIDELER ◽  
Richard A. PAUPTIT ◽  
Russell WALLIS ◽  
Richard JAMES ◽  
...  

We report the first detailed comparison of two immunity proteins which, in conjunction with recent protein engineering data, begins to explain how these structurally similar proteins are able to bind and inhibit the endonuclease domain of colicin E9 (E9 DNase) with affinities that differ by 12 orders of magnitude. In the present work, we have determined the X-ray structure of the Escherichia coli colicin E7 immunity protein Im7 to 2.0 Å resolution by molecular replacement, using as a trial model the recently determined NMR solution structure of Im9. Whereas the two proteins adopt similar four-helix structures, subtle structural differences, in particular involving a conserved tyrosine residue critical for E9 DNase binding, and the identity of key residues in the specificity helix, lie at the heart of their markedly different ability to bind the E9 DNase. Two other crystal structures were reported recently for Im7; in one, Im7 was a monomer and was very similar to the structure reported here, whereas in the other it was a dimer to which functional significance was assigned. Since this previous work suggested that Im7 could exist either as a monomer or a dimer, we used analytical ultracentrifugation to investigate this question further. Under a variety of solution conditions, we found that Im7 only ever exists in solution as a monomer, even up to protein concentrations of 15 mg/ml, casting doubt on the functional significance of the crystallographically observed dimer. This work provides a structural framework with which we can understand immunity-protein specificity, and in addition we believe it to be the first successfully refined crystal structure solved by molecular replacement using an NMR trial model with less than 100% sequence identity.


2015 ◽  
Vol 89 (12) ◽  
pp. 6376-6390 ◽  
Author(s):  
Bruno Da Costa ◽  
Alix Sausset ◽  
Sandie Munier ◽  
Alexandre Ghounaris ◽  
Nadia Naffakh ◽  
...  

ABSTRACTThe influenza virus RNA-dependent RNA polymerase catalyzes genome replication and transcription within the cell nucleus. Efficient nuclear import and assembly of the polymerase subunits PB1, PB2, and PA are critical steps in the virus life cycle. We investigated the structure and function of the PA linker (residues 197 to 256), located between its N-terminal endonuclease domain and its C-terminal structured domain that binds PB1, the polymerase core. Circular dichroism experiments revealed that the PA linker by itself is structurally disordered. A large series of PA linker mutants exhibited a temperature-sensitive (ts) phenotype (reduced viral growth at 39.5°C versus 37°C/33°C), suggesting an alteration of folding kinetic parameters. Thetsphenotype was associated with a reduced efficiency of replication/transcription of a pseudoviral reporter RNA in a minireplicon assay. Using a fluorescent-tagged PB1, we observed thattsand lethal PA mutants did not efficiently recruit PB1 to reach the nucleus at 39.5°C. A protein complementation assay using PA mutants, PB1, and β-importin IPO5 tagged with fragments of theGaussia princepsluciferase showed that increasing the temperature negatively modulated the PA-PB1 and the PA-PB1-IPO5 interactions or complex stability. The selection of revertant viruses allowed the identification of different types of compensatory mutations located in one or the other of the three polymerase subunits. Twotsmutants were shown to be attenuated and able to induce antibodies in mice. Taken together, our results identify a PA domain critical for PB1-PA nuclear import and that is a “hot spot” to engineertsmutants that could be used to design novel attenuated vaccines.IMPORTANCEBy targeting a discrete domain of the PA polymerase subunit of influenza virus, we were able to identify a series of 9 amino acid positions that are appropriate to engineer temperature-sensitive (ts) mutants. This is the first time that a large number oftsmutations were engineered in such a short domain, demonstrating that rational design oftsmutants can be achieved. We were able to associate this phenotype with a defect of transport of the PA-PB1 complex into the nucleus. Reversion substitutions restored the ability of the complex to move to the nucleus. Two of thesetsmutants were shown to be attenuated and able to produce antibodies in mice. These results are of high interest for the design of novel attenuated vaccines and to develop new antiviral drugs.


1992 ◽  
Vol 207 (2) ◽  
pp. 687-695 ◽  
Author(s):  
Russell WALLIS ◽  
Ann REILLY ◽  
Arthur ROWE ◽  
Geoffrey R. MOORE ◽  
Richard JAMES ◽  
...  

2005 ◽  
Vol 281 (9) ◽  
pp. 5829-5836 ◽  
Author(s):  
Luc Ponchon ◽  
Pascale Boulanger ◽  
Gilles Labesse ◽  
Lucienne Letellier

2016 ◽  
Vol 44 (7) ◽  
pp. 3276-3287 ◽  
Author(s):  
Aruna Govindaraju ◽  
Jeremy D. Cortez ◽  
Brad Reveal ◽  
Shawn M. Christensen

Biochemistry ◽  
1998 ◽  
Vol 37 (34) ◽  
pp. 11771-11779 ◽  
Author(s):  
Wei Li ◽  
Stefan J. Hamill ◽  
Andrew M. Hemmings ◽  
Geoffrey R. Moore ◽  
Richard James ◽  
...  

DNA Repair ◽  
2011 ◽  
Vol 10 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Monica C. Pillon ◽  
Jeffrey H. Miller ◽  
Alba Guarné

2004 ◽  
Vol 186 (3) ◽  
pp. 866-869 ◽  
Author(s):  
Daniel Walker ◽  
Matthew Rolfe ◽  
Arthur Thompson ◽  
Geoffrey R. Moore ◽  
Richard James ◽  
...  

ABSTRACT We report the transcriptional response of Escherichia coli MG1655 to damage induced by colicins E3 and E9, bacteriocins that kill cells through inactivation of the ribosome and degradation of chromosomal DNA, respectively. Colicin E9 strongly induced the LexA-regulated SOS response, while colicin E3 elicited a broad response that included the induction of cold shock genes, symptomatic of translational arrest. Colicin E3 also increased the transcription of cryptic prophage genes and other laterally acquired mobile elements. The transcriptional responses to both these toxins suggest mechanisms that may promote genetic diversity in E. coli populations, pointing to a more general role for colicins in adaptive bacterial physiology than has hitherto been realized.


1997 ◽  
Vol 323 (3) ◽  
pp. 823-831 ◽  
Author(s):  
Michael J. OSBORNE ◽  
Russell WALLIS ◽  
Kit-Yi LEUNG ◽  
Glyn WILLIAMS ◽  
Lu-Yun LIAN ◽  
...  

1H–15N NMR studies, in conjunction with mutagenesis experiments, have been used to delineate the DNase-binding surface of the colicin E9 inhibitor protein Im9 (where Im stands for immunity protein). Complexes were formed between the 15 kDa unlabelled E9 DNase domain and the 9.5 kDa Im9 protein uniformly labelled with 15N. Approx. 90% of the amide resonances of the bound Im9 were assigned and spectral parameters obtained from 1H–15N heteronuclear single quantum coherence (HSQC) spectra were compared with those for the free Im9 assigned previously. Many of the amide resonances were shifted on complex formation, some by more than 2 p.p.m. in the 15N dimension and more than 0.5 p.p.m. in the 1H dimension. Most of the strongly shifted amides are located on the surfaces of two of the four helices, helix II and helix III. Whereas helix II had already been identified through genetic and biochemical investigations as an important determinant of biological specificity, helix III had not previously been implicated in binding to the DNase. To test the robustness of the NMR-delineated DNase-binding site, a selection of Im9 alanine mutants were constructed and their dissociation rate constants from E9 DNase-immunity protein complexes quantified by radioactive subunit exchange kinetics. Their off-rates correlated well with the NMR perturbation analysis; for example, residues that were highly perturbed in HSQC experiments, such as residues 34 (helix II) and 54 (helix III), had a marked effect on the DNase–immunity protein dissociation rate when replaced by alanine. The NMR and mutagenesis data are consistent with a DNase-binding region on Im9 composed of invariant residues in helix III and variable residues in helix II. The relationship of this binding site model to the wide range of affinities (Kd values in the range 10-4 to 10-16 M) that have been measured for cognate and non-cognate colicin DNase–immunity protein interactions is discussed.


Sign in / Sign up

Export Citation Format

Share Document