scholarly journals In VitroModeling of Fatty Acid Synthesis under Conditions Simulating the Zonation of Lipogenic [13C]Acetyl-CoA Enrichment in the Liver

2004 ◽  
Vol 279 (41) ◽  
pp. 43217-43226 ◽  
Author(s):  
Ilya R. Bederman ◽  
Takhar Kasumov ◽  
Aneta E. Reszko ◽  
France David ◽  
Henri Brunengraber ◽  
...  
2004 ◽  
Vol 279 (21) ◽  
pp. 21779-21786 ◽  
Author(s):  
Ursula Hoja ◽  
Sandra Marthol ◽  
Jörg Hofmann ◽  
Sabine Stegner ◽  
Rainer Schulz ◽  
...  

1987 ◽  
Vol 243 (2) ◽  
pp. 437-442 ◽  
Author(s):  
M G Buckley ◽  
E A Rath

1. The effect of nutritional status on fatty acid synthesis in brown adipose tissue was compared with the effect of cold-exposure. Fatty acid synthesis was measured in vivo by 3H2O incorporation into tissue lipids. The activities of acetyl-CoA carboxylase and fatty acid synthetase and the tissue concentrations of malonyl-CoA and citrate were assayed. 2. In brown adipose tissue of control mice, the tissue content of malonyl-CoA was 13 nmol/g wet wt., higher than values reported in other tissues. From the total tissue water content, the minimum possible concentration was estimated to be 30 microM 3. There were parallel changes in fatty acid synthesis, malonyl-CoA content and acetyl-CoA carboxylase activity in response to starvation and re-feeding. 4. There was no correlation between measured rates of fatty acid synthesis and malonyl-CoA content and acetyl-CoA carboxylase activity in acute cold-exposure. The results suggest there is simultaneous fatty acid synthesis and oxidation in brown adipose tissue of cold-exposed mice. This is probably effected not by decreases in the malonyl-CoA content, but by increases in the concentration of free long-chain fatty acyl-CoA or enhanced peroxisomal oxidation, allowing shorter-chain fatty acids to enter the mitochondria independent of carnitine acyltransferase (overt form) activity.


2000 ◽  
Vol 28 (6) ◽  
pp. 567-574 ◽  
Author(s):  
J. Ohlrogge ◽  
M. Pollard ◽  
X. Bao ◽  
M. Focke ◽  
T. Girke ◽  
...  

For over 25 years there has been uncertainty over the pathway from CO2, to acetyl-CoA in chloroplasts. On the one hand, free acetate is the most effective substrate for fatty acid synthesis by isolated chloroplasts, and free acetate concentrations reported in leaf tissue (0.1–1 mM) appear adequate to saturate fatty acid synthase. On the other hand, a clear mechanism to generate sufficient free acetate for fatty acid synthesis is not established and direct production of acetyl-CoA from pyruvate by a plastid pyruvate dehydrogenase seems a more simple and direct path. We have re-examined this question and attempted to distinguish between the alternatives. The kinetics of 13CO2 and 14CO2 movement into fatty acids and the absolute rate of fatty acid synthesis in leaves was determined in light and dark. Because administered 14C appears in fatty acids within < 2–3 min our results are inconsistent with a large pool of free acetate as an intermediate in leaf fatty acid synthesis. In addition, these studies provide an estimate of the turnover rate of fatty acid in leaves. Studies similar to the above are more complex in seeds, and some questions about the regulation of plant lipid metabolism seem difficult to solve using conventional biochemical or molecular approaches. For example, we have little understanding of why or how some seeds produce >50%, oil whereas other seeds store largely carbohydrate or protein. Major control over complex plant biochemical pathways may only become possible by understanding regulatory networks which provide ‘global’ control over these pathways. To begin to discover such networks and provide a broad analysis of gene expression in developing oilseeds, we have produced micro-arrays that display approx. 5000 seed-expressed Arabidopsis genes. Sensitivity of the arrays was 1–2 copies of mRNA/cell. The arrays have been hybridized with probes derived from seeds, leaves and roots, and analysis of expression ratios between the different tissues has allowed the tissue-specific expression patterns of many hundreds of genes to be described for the first time. Approx. 10% of the genes were expressed at ratios ≥ 10-fold higher in seeds than in leaves or roots. Included in this list are a large number of proteins of unknown function, and potential regulatory factors such as protein kinases, phosphatases and transcription factors. The arrays were also found to be useful for analysis of Brassica seeds.


2020 ◽  
Vol 104 (14) ◽  
pp. 6057-6065 ◽  
Author(s):  
Lars Milke ◽  
Jan Marienhagen

AbstractMalonyl-CoA is an important central metabolite serving as the basic building block for the microbial synthesis of many pharmaceutically interesting polyketides, but also fatty acid–derived compounds including biofuels. Especially Saccharomyces cerevisiae, Escherichia coli, and Corynebacterium glutamicum have been engineered towards microbial synthesis of such compounds in recent years. However, developed strains and processes often suffer from insufficient productivity. Usually, tightly regulated intracellular malonyl-CoA availability is regarded as the decisive bottleneck limiting overall product formation. Therefore, metabolic engineering towards improved malonyl-CoA availability is essential to design efficient microbial cell factories for the production of polyketides and fatty acid derivatives. This review article summarizes metabolic engineering strategies to improve intracellular malonyl-CoA formation in industrially relevant microorganisms and its impact on productivity and product range, with a focus on polyketides and other malonyl-CoA-dependent products.Key Points• Malonyl-CoA is the central building block of polyketide synthesis.• Increasing acetyl-CoA supply is pivotal to improve malonyl-CoA availability.• Improved acetyl-CoA carboxylase activity increases availability of malonyl-CoA.• Fatty acid synthesis as an ambivalent target to improve malonyl-CoA supply.


1988 ◽  
Vol 251 (2) ◽  
pp. 547-551 ◽  
Author(s):  
J S Wilson ◽  
M A Korsten ◽  
L P Donnelly ◽  
P W Colley ◽  
J B Somer ◽  
...  

Administration of ethanol as part of a nutritionally adequate liquid diet to female Wistar rats was found to depress markedly incorporation of labelled glucose into adipose-tissue acylglycerol fatty acids. Similar results with labelled pyruvate and acetate suggested inhibition of the fatty-acid-synthesis pathway at, or distal to, the acetyl-CoA carboxylase step. Activities of acetyl-CoA carboxylase and fatty acid synthetase were markedly lower in ethanol-fed animals. The activity of another lipogenic enzyme, phosphatidate phosphohydrolase, was not affected by chronic ethanol feeding. These findings suggest that chronic ethanol administration has marked effects on adipose-tissue lipogenesis.


1981 ◽  
Vol 198 (3) ◽  
pp. 485-490 ◽  
Author(s):  
F Assimacopoulos-Jeannet ◽  
R M Denton ◽  
B Jeanrenaud

The effect of vasopressin on the short-term regulation of fatty acid synthesis was studied in isolated hepatocytes from rats fed ad libitum. Vasopressin stimulates fatty acid synthesis by 30-110%. This increase is comparable with that obtained with insulin. Angiotensin also stimulates fatty acid synthesis, whereas phenylephrine does not. The dose-response curve for vasopressin-stimulated lipogenesis is similar to the dose-response curve for glycogenolysis and release of lactate plus pyruvate. Vasopression also stimulates acetyl-CoA carboxylase activity in a dose-dependent manner. Vasopressin does not relieve glucagon-inhibited lipogenesis, whereas insulin does. The action of vasopressin on hepatic lipogenesis is decreased, but not suppressed, in Ca2+-depleted hepatocytes. The results suggest that vasopressin acts on lipogenesis by increasing availability of lipogenic substrate (lactate + pyruvate) and by activating acetyl-CoA carboxylase.


Sign in / Sign up

Export Citation Format

Share Document